
USENIX Association

Proceedings of
LISA 2002:

16th Systems Administration
Conference

Philadelphia, Pennsylvania, USA
November 3–8, 2002

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Work-Augmented Laziness with the
Los Task Request System

Pp. 1-12 of the Proceedings of LISA ’02: Sixteenth Systems Administration Conference
(Berkeley, CA: USENIX Association, 2002).

Thomas Stepleton – Swarthmore College Computer Society

ABSTRACT

Quotidian system administration is often characterized by the fulfillment of common user
requests, especially on sites that serve a variety of needs. User creation, group management, and
mail alias maintenance are just three examples of the many repetitive tasks that can crowd the
sysadmin’s day. Matters worsen when users neglect to provide necessary information for the job.
They can grow bleakest, however, at volunteer-run or otherwise loosely-coordinated sites, where
sysadmins often collectively hope for someone else to attend to the task.

The Los Task Request System addresses all three problems. It mitigates user vagueness with
web forms generated from XML parameter specification files. It skirts sysadmin sloth by requiring
one simple review and approval step to set changes into motion. It then saves time by
automatically executing commands tailored from user input. Amidst this convenience,
cryptographic signatures on Los directives ensure that only administrators can alter the system.
Overall, Los aims to make life easier for users and sysadmins by standardizing and streamlining
the submission, review, and execution of requests for common system tasks.

Introduction

For over a decade, the volunteer student system
administrators of the Swarthmore College Computer
Society (SCCS) have provided shell, mail, and web
services to hundreds of College-affiliated users. How-
ever, a problem arose during the 2001-2002 school
year: nobody was volunteering to take care of com-
mon system administration requests. The sysadmins
had an excuse: most were seniors that year and were
confronted with the double whammy of the formidable
Swarthmore workload and figuring out what to do
after college. Still, the requests kept piling up.

Immediately, the SCCS chose to hire new sysad-
mins from the freshman and sophomore classes. At the
same time, however, an idea began to take form.
Instead of having users mail the admins with only
vague ideas of what they need to say to get things
done, what if a web form could guide them in supply-
ing the necessary information? Then, what if the
sysadmins could just direct the data to some handy
scripts and have everything taken care of automati-
cally? The notion of turning the e-mail client into a
system administration tool was compelling, and
through an impossible feat of time management,
development of the Los Task Request System began.

From the onset, it became clear that Los would
have to satisfy some challenging requirements:

1. It would have to be general enough to handle
many different types of system administration
tasks.

2. It would have to reduce the time required for
common system administration tasks beneath
the threshold of the harried student volunteer.

3. It would have to collect and present necessary

system configuration information to the user in
order to be user-friendly (e.g., no rote memo-
rization of group names).

4. It would have to be secure by design. Only
sysadmins should be able to make changes to
the system, and integrating new tasks into Los
should never compromise its security.

Happily, after months of programming, Los
appears to fulfill all of these requirements. Points 1
and 3 were handled by diligent coding of no particular
novelty; the approach to points 2 and 4, on the other
hand, is Los’s most compelling feature.

Los can be characterized as a ‘‘semi-automatic’’
system administration tool. Some system administration
tools directly empower the user to make important
changes to the system. These ‘‘fully automatic’’ tools are
carefully written to resist malicious behavior on behalf of
the user; however, since they must have elevated privi-
leges, there’s always a slight risk of an exploit. Los is
designed so that only the sysadmins can activate the
privileged part of the system. A review of the user’s
input, or ‘‘task request,’’ by a responsible human, while
relatively brief and unchallenging, is mandatory.

The best way to understand how the Los system
works is to follow it as it handles a single task request.
This ‘‘bird’s eye view’’ will reveal that there are many
steps involved in the process. However, it is important
to remember that users and sysadmins themselves only
see a small and manageable fraction of them for any
given request.

The process starts on the Web, where the user
makes a selection from a catalog of available auto-
mated tasks (Figure 1). This catalog is generated from
a collection of task description files, which are XML

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 1

Work-Augmented Laziness with the Los Task Request System Stepleton

files that contain all the information Los needs to
solicit and apply task information from a user.

Figure 1: The Los task list. The user begins here.

Using information from the description file for
the user’s chosen task, the Los web interface retrieves
information from the user with a ‘‘wizard’’-style series
of input forms (Figure 2). The description file can
invoke sophisticated filters that check the validity of
input and solicit corrections (Figure 3).

When the user finishes entering data, Los checks
the e-mail address they specified by sending them a

verification message. The user visits a web address
from the message, and Los sends their input on to the
sysadmins. The user is finished and now waits for the
task request to be fulfilled.

A few moments later, a sysadmin sees the task
request as an XML document attached to an e-mail.
Surveying the user’s input, the admin decides it is
valid and uses a small utility to forward the data to the
Los task execution module. The utility cryptographi-
cally signs the request with the admin’s GNU Privacy

2 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Stepleton Work-Augmented Laziness with the Los Task Request System

Guard (GPG) [1] key before sending it. (In the future,
the utility will be unnecessary; the sysadmin will sim-
ply forward a signed copy of the task request e-mail to
the execution module directly.) The sysadmin is fin-
ished and waits for an e-mail confirming the execution
of the task.

Figure 2: Using a ‘‘wizard’’-style interface, the user enters data for the task.

The Los task execution module, having validated
the signature on the task request, loads the appropriate
task description file and determines what commands it
needs to run. It gleans arguments to the specified

commands from the task request data, and each com-
mand is executed. Finally, Los mails the commands’
output to the sysadmins for review.

By now, the SCCS has successfully adapted a
number of system administration tasks to this auto-
mated paradigm. Users are able to request new
accounts, create and manage mail aliases and mailing
lists, and allocate and control access to shared student
organization webspace through six custom-made Los
tasks.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 3

Work-Augmented Laziness with the Los Task Request System Stepleton

Related work

The goals of Los are not especially novel. Sev-
eral systems that automate or at least accelerate com-
mon system administration tasks already exist. These

Figure 3: Task description files can invoke filters that check the validity of user input.

seem to fall into two categories: the fully automatic
user-centric systems that require no sysadmin inter-
vention, and systems which are intended to be seen
only by the administrators. A few seem to cater to
both, depending on their configuration.

A good first place to look for both kinds of soft-
ware is the Internet hosting business, where the users

are owners of particular websites or other Internet
resources and the administrator must oversee the
servers that host them. Because site owners want to
provide the same services on their sites that organiza-
tions with dedicated servers can provide, it is often
necessary for system administrators to directly config-
ure mail transport agents, FTP daemons, and other
systems to their needs. Some solutions to this problem
streamline the sysadmin’s job: one example software
package is ispbs [2], which provides a convenient web
interface for administration of many such sites. There
are several systems that also have user-centric

4 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Stepleton Work-Augmented Laziness with the Los Task Request System

capabilities, however, including Account Systems
Manager [3] (ASM), and ISPMan [4] which provide
web-based configuration interfaces to the user as well.
To make system changes, all three eventually require
some sort of automated privileged mechanism: ispbs
uses a script that is automatically executed as root by
cron, ASM executes changes immediately by always
running as root, and ISPMan places user requests into
an LDAP database which is queried periodically by an
execution system.

We find similar software outside of the Internet
hosting realm as well. System administration tools that
take in data from sysadmins and automatically apply it
are well known and include such software as Webmin
[5] and Linuxconf [6] Both of these systems provide
standardized, extensible means of gathering data from
the system administrator and executing the requested
changes. Linuxconf can even acquire input through
different interfaces, including a web based interface, a
native GUI frontend, and a text console interface.
These systems also require privileges to work: like
ASM, Webmin has a dedicated webserver which runs
as root, while Linuxconf in common configurations
uses a SUID server program executed by the xinetd
Internet super server. Another systems of this sort is
the Pelendur account management system [7].

Both Webmin and Linuxconf also have user
accessible fully automatic capabilities. While Linux-
conf does so by using a built-in per-user privilege sys-
tem, Webmin employs a separate system called User-
min [8], which also features a dedicated webserver
running as root. Other fully automatic systems include
Accountworks [9] and Mailman [10]. These systems,
which manage user accounts on a corporate network
and larger mailing lists respectively, are not as general
as those described above. In the case of Mailman, its
narrow application focus permits it to be easily iso-
lated from the rest of the system, thus mitigating a
great deal of the security risk involved in user-acti-
vated system alteration.

The components that make up Los are also not
especially new. Any user of an e-mail to FTP inter-
face, the Majordomo [11] mailing list system, or vari-
ous e-mail based problem tracking systems is familiar
with sending commands by e-mail. An add-on to the
RT problem tracking system [12] even checks crypto-
graphic signatures on e-mail directives [13]. The XML
encoding of user data bears a resemblance to existing
XML based RPC mechanisms like SOAP [14].
Finally, the extensible web-based user input system is
similar to (but rather more limited than) configurable
web-based database frontends like FileMaker [15].

Los Components in Depth

The bird’s eye view detailed in the introduction
reveals three major stages in the life of a Los task
request: creation, review, and execution. Los takes
advantage of these divisions with a design that

employs a separate mechanism for each stage. While
the mechanism for task request review is actually the
judgment of a discriminating system administrator, the
other two steps are automated by two Perl programs of
considerable complexity: the web interface and task
execution module mentioned previously. The web
interface is a CGI program that resides in any web
accessible directory that permits execution of CGI
scripts. The task execution module usually resides in a
library directory that contains other files necessary for
both programs. The task description files, which con-
tain detailed specifications for the data required for a
task and the commands for applying it, supply both
components with the specific information they need to
do their job.

Both programs are designed for version 5.005
and greater of the Perl interpreter running on relatively
POSIX-compliant systems. However, they also
employ several different Perl modules from the Com-
prehensive Perl Archive Network (CPAN) [16], which
may further restrict their use to the more familiar and
modern Unices. A copy the GNU Privacy Guard
encryption software must be installed for the Los task
execution module to function. At the SCCS, Los was
developed and runs on version 2.2 of Debian
GNU/Linux. This section will further detail the
design, use, and implementation of these important
Los components.

Task Request Creation with the Web Interface
The business of getting task request information

from the user is conducted by a single large CGI pro-
gram that creates a series of ‘‘wizard’’-like web forms
for the user. While one might initially suspect that this
consists mainly of presenting questions and HTML
form inputs to the user, the job is much more complex
for all but the simplest of data collection tasks. Much
of the complexity of the Los task creation script is
designed to handle the following issues:

1. Dynamic generation of choices . In order to
keep things simple for the users, it is often nec-
essary for the system to generate a list of possi-
ble choices on the fly rather than require the user
to remember them and type them explicitly into
an input box. A good example of this is a form
that allows users to alter membership in a user
group that has write access to a web page or
other resource. It’s much easier for the group
members to identify their group name from a
listing rather than spell it out on their own; later
on, furthermore, the script must be able to list
the members of the selected group for alteration.

2. Dynamic checking of input. Since no task
request is executed without a sysadmin’s
approval, it’s not absolutely necessary for user
input to be validated at every step. However,
having the system perform checks on its own
can relieve the sysadmin of having to incre-
mentally correct the user’s choices again and

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 5

Work-Augmented Laziness with the Los Task Request System Stepleton

again. It can also allow the sysadmin to focus
on more subtle errors in the input instead of
typos. The issues involved in dynamic input
checking are similar to those surrounding
dynamic choice generation.

<parameter name="uname" title="Preferred username">
<description>
Please choose a new username here. Be sure to specify one that is at
least three letters long.

</description>
<selector name="Los::Selectors::Input" args="size=8,maxlength=8"/>
<format>
<pcre>/. . ./</pcre>
<description>This username is too short</description>

</format>
<format>
<filter name="Los::Filters::Tolower"/>
</description></description>

</format>
<format inverse="true">
<filter name="Los::Filters::IsUser"/>
<description>This username is already taken</description>

</format>
</parameter>

Figure 4: An simplified example of a parameter entry from a Los task description file.

3. State maintenance, revision, and security.
Since the input script gathers information with
a series of forms, it is necessary for it to pre-
serve all the information the user has already
supplied as it asks for more information with
new forms. In the current system, this informa-
tion is stored on the client side with ‘‘hidden’’
HTML form input elements. However, this
requires tamper checking to make certain the
user hasn’t maliciously altered any of the data
stored on their end. In general, judicious man-
agement of input is necessary to ensure that
data is kept intact through multiple back and
forth transactions between client and server.

As mentioned earlier, the Los input script first
greets the user with a catalog of available tasks. This
simple task is accomplished with a cursory scan of all
the task description files for title and summary infor-
mation and is not especially complicated. More thor-
ough examination of the task description files happens
when the user selects a task and begins supplying data.
Because the input script maintains all state on the
client side, the following steps generally take place on
each new page load:

1. The script organizes information it loads from
the current task description file.

2. It determines which page of the wizard-style
input forms the user has just completed.

3. If the user is advancing to the next page, it
checks their new input against the specifica-
tions in the task description file. If there is the
problem with the input, it prepares to show the
last page again with error messages; otherwise,
it readies the next screen. If, on the other hand,
the user chose to go back to a previous page,

the script prepares to go backwards without
checking input.

4. The script now displays the new page for the
user, a process consisting of generating the
HTML form elements that belong on the page
and storing all of the data the user has entered
so far. Data entered on other pages are cached
in hidden HTML form inputs – the rest, if the
user has been here before, is stored in the actual
form elements shown on the page. The style of
the page itself is determined by a collection of
templates that can be configured by the admin-
istrator.

Each page generated by the input script is
described by one of several parameters sections of the
task description file. The parameters section consists
of multiple parameter entries, which each describe a
particular piece of information needed for the task. In
addition to providing a short description of the param-
eter for the user, these entries also specify the proper
type of HTML form widget for acquiring the informa-
tion and a list of tests that validate the user’s input.
Some parameters, like the user’s e-mail address, are
required for all tasks; currently, if a task description
file omits them, the input script will automatically
insert default stand-in parameter entries into its own
in-memory representation of the task.

Figure 4 contains a sample parameter entry from
a Los task description file. The selector tag invokes a
routine in a ‘‘standard library’’ of HTML form ele-
ments to generate the simple text input widget needed
for this parameter. The following format tags are
either Perl-compatible regular expressions (PCREs) or
library calls like the selector tag, identified with pcre
and filter tags respectively. For specialized applica-
tions, admins may create their own collections of
selectors and filters if they choose.

Selectors and filters are nothing more than Perl
routines, and relatively little effort is made to shield

6 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Stepleton Work-Augmented Laziness with the Los Task Request System

them from the internals of Los. This means that they
can actually alter the data submitted by users, a desir-
able feature in some cases. Because the example
parameter entry in Figure 4 is soliciting a username
from a new user, it uses a filter called Los::Fil-
ters::Tolower to convert the input to lowercase charac-
ters. This is necessary for the next filter, which checks
whether the username already exists on the system.
Some elaborate filters take even more advantage of
this freedom: for example, a system of password fil-
ters for protecting access to certain Los scripts checks
and updates a password database as it processes user
input.

<?xml version=’1.0’ encoding=’utf-8’?>
<!DOCTYPE los_transaction SYSTEM "los_transaction.dtd">

<los_transaction date="Sat, 06 Jul 2002 17:54:49 EST"
ip="24.205.87.222"
id="1025996089-489825418">

<taskinfo title="Create a BIG mailing list"
version="1.0"
creator="tss"
taskfile="maillist_big_new.xml"
md5sum="d64d1c85c8c7f3700826d4eda32d512f" />

<parameters>
<parameter name="EMAIL">tss@sccs.swarthmore.edu</parameter>
<parameter name="password_check">1a@S3d$F</parameter>
<parameter name="pledge">null</parameter>
<parameter name="password">1a@S3d$F</parameter>
<parameter name="FULLNAME">Tom Stepleton</parameter>
<parameter name="DESCRIPTION">null</parameter>
<parameter name="listname">test-list</parameter>

</parameters>
</los_transaction>

Figure 5: A sample Los task request – this one requests a new mailing list named test-list.

Many arguments to selectors and filters can be
interpolated, thereby incorporating user input into
their operation. This is the basis of the dynamic gener-
ation of choice mentioned earlier. Below, an example
selector tag generates a textarea for editing group
membership:
<selector
name="Los::Selectors::GroupTextarea"
args="rows=10,cols=10,wrap=off,
group=˜pagename˜"/>

The name of the group to be edited is stored in
the variable pagename, which is named between two
tilde characters in the group argument to this selector.
Presumably pagename was supplied by the user in an
earlier form page; in the script this example was taken
from, the user chooses pagename from a menu of stu-
dent organization webpages.

Eventually the script runs out of form pages to
show the user; at this point the user has entered all the
information mandated by the task description file. The
script does one final check of all the user input by
checking every format item of every parameter. If all
is well, the script creates a file storing the information
as a formal Los task request, giving it a unique ID in
the process. It e-mails a confirmation URL containing

the ID to the user and keeps the file on hand until the
URL is visited. Once this occurs, the task request is
sent at last to the system administrators for review and
approval.

A great deal of effort has gone into making the
Los input script flexible enough to handle many differ-
ent types of information gathering applications. In
recent months, the standard selector and filter libraries
have grown in their abilities to draw information from
files, user and group databases, and other sources
required by the Los tasks designed for the SCCS. Nev-
ertheless, it is certain that there will be applications at
other sites where these routines will be inadequate.
Even the input script itself is limited to proceeding lin-
early through the lists of parameters in the task
description files – although it can modify its questions
based on prior user input, it cannot adopt radically dif-
ferent branches of questioning on any basis. Thank-
fully, because Los’s modular design permits other
interfaces to create task requests to do what the web
interface does, tasks with complex data gathering
needs can be handled by custom applications and still
work with the rest of the Los system.
Task Request Execution by Mail

Figure 5 shows a complete Los task request,
which the system administrators receive as e-mail
attachments from the input script. If the request is sat-
isfactory, the sysadmin executes the task request by
signing it with their GPG key and sending it on to the
task execution script over e-mail. This relatively sim-
ple gesture belies the considerable complexity
involved in making certain that the task request is
trustworthy and avoiding the perils that come with an
e-mail activated system with elevated privileges.

Because the formatting of e-mail messages differs
between mailers and because the Los executor is
designed to diminish security risks by analyzing all
aspects of an input e-mail, a special utility program is

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 7

Wo r k - A u g m e n t e d Laziness with the Los Task Request System Stepleton

currently required to generate e-mails for the executor.
The sysadmin pipes the task request into the utility,
which encodes it in Base64 to preserve its formatting,
solicits the admin’s GPG passphrase, signs the data with
the admin’s GPG key, and sends it on to the executor.

The Los executor is currently a SUID root Perl
script. This should rouse concern in cautious system
administrators, as SUID scripts are widely reputed to be
dangerous [17]. However, the Perl interpreter on Unix
systems has a special facility for safer execution of
SUID scripts: suidperl, which, by automatically impos-
ing a technique known as taint checking, requires the
programmer to properly shield the actions of the SUID
script from externally controlled influences like input
and environment [18]. There are further security pre-
cautions taken by suidperl to thwart the subversion
methods commonly directed at SUID scripts, and mod-
ern Unix systems often have mechanisms that prevent
the race condition attacks that made all SUID scripts
unsafe in past years. Still, some admins may be unwill-
ing to adopt the extra risk that accompanies a new pro-
gram with root privileges and may conclude that Los is
not appropriate for their sites.

When a signed task request is sent to the Los
executor by mail, it is actually sent to a dedicated user
whose e-mail is redirected by Procmail [19] or an
analogous mechanism into the Los execution script.
The script itself is owned by root and is otherwise
exclusively executable by members of a dedicated
group, of which the Los executor user is the only
member. Security conscious sysadmins may elect to
impose additional constraints of their own on the
mechanism that directs e-mail into the Los execution
script, such as an independent verification of the cryp-
tographic signature on the task request or a blanket
rejection of all messages except those from a few
select hosts. Thus, though e-mail may seem like a par-
ticularly unprotected mode of transit for the task
requests, judicious application of common e-mail utili-
ties like Procmail make it possible to carefully inspect
and filter them first.

Once underway, the Los executor first checks the
GPG signature on the message. To do this, as it does
with any external program call that doesn’t require
root privileges, the executor spawns a subprocess that
adopts the UID of the dedicated Los user, performs the
work itself, and reports back to the parent through
UNIX pipes. For this particular step, a double function
is served, as the Los user also owns the GPG keyring
against which the task request signature is validated.
For the signature to be approved, the signer’s public
key must be a trusted key (i.e., it must be locally
signed with the Los user’s key, requiring the admin to
su to the losuser and import and sign their key manu-
ally) and must be explicitly mentioned in a file con-
taining a list of keys whose owners have authorization
to approve task requests. Unless all of these conditions
are met, the Los executor will abort and report the fail-
ure to the sysadmins.

The script moves on to carefully decode and
parse the Base64 encoded task request, maintaining a
healthy paranoia about unexpected input. This done,
the script examines the taskinfo tag from the task
request to determine which task description file was
used to generate it. The title, version, and creator
attributes must correspond exactly with the version
and creator information specified in the task descrip-
tion file, otherwise the script assumes that two differ-
ent versions of the file are in use (a situation that
might arise if the input script and executor are on dif-
ferent hosts) and aborts. Optionally, the executor can
compare the MD5 checksum of its copy of the task
file with that of the one used by the input script. This
is not enabled by default, however, as some admins
may choose to have different task description files for
task request creation and execution.

With all its suspicions allayed, the Los executor
can turn its attentions at last toward executing the task.
There is still one contingency to anticipate, however.
It is possible that the same task request might be sent
to the executor twice by two sysadmins acting inde-
pendently. For certain tasks, this could be harmful to
the system. The executor prevents this by attempting
to deposit the contents of the task request into a file
named with the task request’s ID in a designated log
directory. If the file already exists or if the script is
unable to get an exclusive lock on an empty file, the
executor presumes that the task has already been exe-
cuted and aborts. This protective feature also doubles
as a convenient logging mechanism.

The Los executor finally spawns a subprocess to
execute the task. The commands for task execution
appear in a commands block at the end of the task
description file, which also specifies the username
under which the commands should be run. Immedi-
ately the subprocess drops as many privileges as it can
and executes each command one by one. The Los
executor has a relatively flexible means of interpolat-
ing variable names in command arguments. However,
it is not as flexible as the shell and is not intended to
be. Rather than reply on a sophisticated command line
interpreter built into the script, it is expected that
administrators will simply pass variables into shell
scripts that do most of the work themselves.

Once the subprocess is finished, its output and
the output of all the commands it invoked are sent
back to the sysadmins. The well-traveled and highly-
automated life of the task request is over, and the user
is (hopefully) satisfied.

Los In Use at the SCCS

The Swarthmore College Computer Society has
prepared a number of tasks for automation by Los.
These tasks represent a certain critical intersection
between those that are most frequently requested by
our users and those that are the most bothersome to
take care of. These include the creation of new users

8 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Stepleton Work-Augmented Laziness with the Los Task Request System

and mailing lists, the management of mail aliases, and
the creation and management of student organization
webpages. These are interesting problems as they
require both the input and execution sides of Los to
involve themselves deeply in the analysis and modifi-
cation of different aspects of system configuration.

The Los task description files at the SCCS have
been written to thoroughly screen user input for cor-
rectness. In cases like mail alias creation, this requires
the input script to check whether the new alias name
isn’t already being used by users, existing mail aliases,
or Mailman mailing lists on our system. Organization
web page management requires the culling of group
membership information as well as password-
restricted access. The standard selector and filter
libraries handle these jobs capably, though as new
needs for Los arise, there will doubtless be a need for
more library functionality.

For most of the SCCS tasks, the Los executor
simply invokes an external script with the data col-
lected from the user. Often these scripts must modify
configuration files like the mail aliases database, a
task which requires care even when performed by a
human administrator. To make this modification task
simpler, Los comes with a utility that allows the
scripts to perform the modifications in a ‘‘record-ori-
ented’’ manner: within a section of the file delineated
by special comments, the utility adds, alters, and
removes comment-delimited records of text provided
by the scripts.

This utility exhibits a high degree of caution and
will fail if the record section and record delimiters are
not all well-formed. Similarly, whenever possible, the
scripts employ the system file modification tools sup-
plied with our Linux distribution, including useradd and
gpasswd for modification of the user and group
databases respectively. The SCCS believes that stan-
dardized tools are the key to safe automated modifica-
tion of important system configuration files, and we
abide by this in our executor scripts as often as possible.

Creating Los task description files really is pro-
gramming, and the time it takes depends on how thor-
oughly the sysadmin wishes to check user input and
how difficult it is to safely automate the execution of
task requests. The selector and filter lines in parameter
entries are comparable to function calls and tend to
each take several different arguments. It would not be
difficult to make an interface for task description file
creation that uses a web browser and dialog boxes to
simplify the task; indeed, this might greatly speed the
process, as much of the development effort goes into
manually creating the XML and remembering the
arguments to selectors and filters.

For the moment, setting up Los for a new task
can take some time, on the order of several hours for
us at the SCCS. Furthermore, if the task requires a
custom selector or filter, some rather involved Perl

programming may be required, as the interface the Los
input script uses to invoke the selectors and filters is
complex. This may change in the future, but current
efforts are focusing on making the standard libraries
more versatile and complete.

For the time being, expeditious programming of
Los task description files requires planning before-
hand. The admin can work backwards, starting with
figuring out how tasks can be executed automatically
and then determining exactly how to obtain the infor-
mation needed for task execution through Los. Once
choices about parameter inputs have been made, the
admin can start thinking about what checks they wish
to apply to the user’s input. At last, with all of these
things established, the admin can code up the task
description file parameter entry by parameter entry.
Thankfully, once the task description file has been
completed, installing it into the catalog of Los tasks is
as simple as dropping it into the same directory as all
the other Los tasks. The task appears in the listing,
ready to use, the next time the main Los catalog page
is loaded.

Los was completed at the SCCS in the final
months of the 2001-2002 school year. As such, most
students at Swarthmore were too busy to request the
tasks Los has been configured to handle. After the end
of the semester and up to the time of writing (mid
summer), requests have been understandably sporadic.
Los has indeed capably handled these requests and has
dramatically improved sysadmin response time, usu-
ally finishing within a couple hours of the request sub-
mission the business that could take up to a week
depending on the demands of our courses or the dis-
tractions of summer.

However, it has yet to face the normal SCCS
request workload or the heavy period that comes at the
beginning of the school year. The SCCS fully expects
Los to greatly improve our service to the college com-
munity under these stresses, and by the time of the
2002 LISA conference we intend to quantitatively
demonstrate this improvement.

One thing we are capable of measuring now is
the performance of the Los system on the SCCS
servers. Currently we’re running both the Los input
script and the executor on our main login server, a 400
MHz Pentium II-based machine with 380 MB of
memory. Because Los is frequently opening files, gen-
erating NIS or LDAP queries, or doing whatever it
needs to do to to get the information for its selectors
and filters, it is not a champion of speed.

The Los task catalog on the SCCS takes just
under four seconds to load on the Swarthmore net-
work, with the time mostly occupied by the superficial
scan of the six different task description files we use.
For some of the more complicated tasks, it can take
about the same time to proceed from one wizard
screen to the next. Even when the input script is just

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 9

Work-Augmented Laziness with the Los Task Request System Stepleton

creating HTML without doing any input checking or
complicated widget generation, the overhead of load-
ing and parsing the task description file and otherwise
getting things ready can take about a second.

Naturally, the speed of the execution script
depends on the particulars of the task being executed.
Though the SCCS task description files exhibit con-
siderable complexity when it comes to checking the
user ’s input, the fact is that once the input is collected,
there isn’t much work to do for our tasks. Typically a
few files will be modified and group membership will
be altered, and then the task is finished. Our non-sci-
entific gauge of how long a task request takes to exe-
cute, which involves approving a task and then enthu-
siastically mashing the TAB key in the Pine mailer’s
message index, indicates that most of our tasks take
between five and ten seconds to be executed.

Future Directions in Los

After months of development, Los has grown
into a system that meets all the goals the SCCS set out
for it. It provides a straightforward interface for com-
mon system tasks, eliminating the usual e-mail dialog
needed to determine exactly what the user wants. It
provides an antidote to the ‘‘someone else will do it’’
syndrome of the busy volunteer sysadmin by drasti-
cally reducing the time it takes to attend to these tasks.
However, Los is surely not right yet for everyone.
This section lists some possible improvements to Los
or similar semi-automatic system administration sys-
tems.

More thorough task delegation. For the SCCS,
Los abbreviates the time it takes to attend to system
tasks enough that it’s not necessary to formally assign
task requests to system administrators to ensure that
someone attends to them. Indeed, this is probably not a
good strategy for us, as it’s hard to predict when a par-
ticular admin has time to attend to the system rather
than coursework. However, it might make sense at some
sites for task requests to be automatically delegated to
members of the administration team. Modifying Los to
send task requests to particular administrators would be
fairly easy – making a system that carefully manages
who was assigned what would be harder.

Accountability through cryptography. At the
moment, Los doesn’t record who authorized the exe-
cution of a task request. Since a cryptographic signa-
ture is required for this to happen, a great deal more
could be done to indicate incontrovertibly who autho-
rized the execution of a task. This also would demand
relatively little modification of Los, though it does
demand a secure, external means of logging task
requests and signatures.

Use of XML based RPC standards. As hinted
in the references section, a Los task request is little
more than a remote procedure call. Los happens to use
XML for task requests and task description files

mostly due to the great amount of support for XML in
Perl and elsewhere, and thus relatively little attention
was given to modeling Los’s data transaction formats
after established XML-based standards. However, it
may be more beneficial from an integration and versa-
tility standpoint to use one of the standard XML-based
RPC message formats such as SOAP [14] or XML-
RPC [20]. Los task requests could then conceivably be
used with other systems besides the Los executor.

Integration with Linuxconf. As mentioned pre-
viously, Linuxconf is a powerful collection of tools
designed to automate and provide a straightforward
interface for common system administration tasks.
Unlike Los, however, Linuxconf is designed for the
system administrator and focuses on the kinds of sys-
tem parameters the user shouldn’t necessarily have to
deal with (firewall setup, printer configuration, etc.).

At sites with a lot of personal Linux worksta-
tions, however, users may legitimately wish to alter
these system parameters of desktop machines while
administrators might prefer not to give them root
access. One solution might be to use Los to collect
configuration requests from the user and then to
invoke the powerful Linuxconf modules with the Los
executor to make the changes.

Linuxconf already does much of what Los does
with respect to collecting and applying data, so it may
instead make sense to adapt Linuxconf to the semi-
automatic approach to task request approval.

Easier review of task requests. Right now the
review of Los task requests requires the sysadmin to
visually parse XML to determine whether the user’s
input is appropriate. This is not especially difficult, but
it could be streamlined by a program that interpreted
Los task requests, combined them with the informa-
tion in their corresponding task description files, and
generated more legible representations of the user’s
data. Standardized technologies like XSLT [21] could
make this a rather straightforward task,

Easier authorization of task requests. One
extremely desirable improvement to Los is the elimi-
nation of the clumsy approval script. It would be bet-
ter if the executor were capable of taking signed e-
mail forwards from any mail client, determining
whether the signature was valid, and executing the
task request. This is difficult, however, as it requires
careful analysis of the e-mail, and of course the conse-
quences of a misjudgment could be dire. Further com-
plicating matters, some mailers have different behav-
iors when it comes to signing e-mails with attach-
ments, let alone signing forwards of e-mails with
attachments. Still, the benefits of being able to simply
forward a task request to the Los executor make this
an eminently worthwhile goal.

Novel input methods. The web interface to Los
is a fairly satisfactory means of acquiring input from
the user. Pains have been taken to make the default

10 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Stepleton Work-Augmented Laziness with the Los Task Request System

template for Los’s HTML output attractive in Lynx and
other text-based browsers. Still, it might be useful to be
able to submit Los task requests from handheld com-
puters, kiosks, embedded specialty systems, or other
devices where web browsers are not practical. Unfortu-
nately, this may require a restructuring of Los, as the
selector and filter lines in the task request files are tied
fairly exclusively to the Web-only standard libraries.

Integration with problem tracking systems.
Though not necessary for the SCCS, some sites might
benefit from managing Los task requests with a prob-
lem-tracking system. Users could check on the status of
their task requests, and sysadmins could tell at a glance
which tasks were awaiting attention. A history of exe-
cuted tasks would also be available for later perusal.

Limited experimentation on integrating Los with
problem tracking software has already taken place.
Because Los uses e-mail as its transaction transport
mechanism, the e-mail based GNATS system [22] was
an easy choice. It was not difficult to alter the CGI
input script and the task request approval script to cre-
ate and interpret GNATS problem report e-mails.
However, there are opportunities for tighter integra-
tion. Just as you can now edit a problem report by
specifying its category and ID number on the com-
mand line (as in edit-pr mycategory 532, a sysadmin
should be able to approve a task request in the same
fashion with a script that automatically updates the
status of the problem report that contains it. This
should not be a challenging task.

One issue that remains to be resolved is the
encoding of task requests in GNATS problem reports.
When the input script sends a task request to the
sysadmins, it places it in a Base64 encoded MIME
attachment to avoid corruption of the data. Most Los
applications don’t need this precaution, but the risks of
quoted-printable mail encoding, CR to CRLF conver-
sion, and other e-mail mutations make it a prudent
one. A default GNATS installation does not deal well
with MIME-encoded e-mails, though this issue is
being addressed. For the time being, though, another
encapsulation mechanism may be necessary.

Use on multiple systems. At the moment, thanks
to the stopgap task approval script, Los task requests
can only be directed toward a single Los executor, and
thus a single computer system. Certainly the script
called by the executor could use a tool like Igor [23] to
trigger changes on many systems at once. What about
a situation where different kinds of task request must
be executed on different machines?

When the task approval script is eliminated, the
sysadmin will be able to simply direct task requests
toward the proper computer by altering the To: filed in
their e-mail client. However, because executing a task
request on the wrong system could have negative con-
sequences, it might be appropriate to also place extra
information in Los task requests that prevent them

from being executed on the wrong system. This would
not be an especially difficult modification.

Getting Los

In order to encourage widespread use and enthusi-
astic development, Los has been released under the
most recent version of the BSD license. Los can be
downloaded from the Free Software Foundation’s
Savannah development repository at http://savannah.
gnu.org/projects/los/ .

Acknowledgments

Deserving recognition are the Swarthmore College
Computer Society and the Swarthmore Linux User’s
Group mailing list members for their resources, support,
and encouragement. Advice and instruction from the
denizens of #perl on irc.openprojects.net as well as from
Frank J. Tobin, the author of the GnuPG::Interface Perl
module, are gratefully acknowledged.

Author Information

After getting his start administering the Linux
mail and web server at tiny Thomas Jefferson School
in St. Louis, Tom Stepleton went on to serve as a
sysadmin at the Swarthmore College Computer Soci-
ety for all four of his undergraduate years. Currently,
Tom is a first year doctoral student at the Carnegie
Mellon University Robotics Institute, where some sys-
tems can physically evade administration. While Tom
tends to crank out open source software packages
semiannually, Los is his largest to date.

References

[1] GnuPG Team, et al., ‘‘GNU Privacy Guard,’’
http:// www.gnupg.org/ .

[2] Host Plus, et al., ‘‘ispbs,’’ http://ispbs.hostplus.
net/ .

[3] Neikous Software, et al., ‘‘Account Systems
Manager,’’ http://asm.neikous.com/ .

[4] Ghaffar, Atif, et al., ‘‘ISPMan,’’ http://www.
ispman.org/ .

[5] Cameron, Jamie, et al., ‘‘Webmin,’’ http://www.
webmin.com/ .

[6] Solucorp, et al., ‘‘Linuxconf,’’ http://www.solucorp.
qc.ca/linuxconf/ .

[7] Curtin, Matt, Sandy Farrar, and Tami King,
‘‘ P e l e n d u r : Steward of the Sysadmin,’’ Proceedings
of the Fourteenth Usenix System Administration
Conference, Dec. 2000.

[8] Cameron, Jamie, et al., ‘‘Webmin,’’ http://www.
webmin.com/index6.html .

[9] Arnold, Bob, ‘‘Users Create Accounts on SQL,
Notes, NT, and UNIX,’’ Proceedings of the Twelfth
Usenix Systems Administration Conference, Dec.
1998.

[10] Viega, John, Barry Warsaw, and Ken Manheimer,
‘‘Mailman: The GNU Mailing List Manager.’’

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 11

Work-Augmented Laziness with the Los Task Request System Stepleton

Proceedings of the Twelfth Usenix Systems
Administration Conference, Dec. 1998.

[11] Chapman, D. Brent, ‘‘Majordomo: How I
Manage 17 Mailing Lists Without Answering
‘‘-request’’ Mail.’’ Systems Administration (LISA
VI) Conference (LISA ’98), Oct. 1992.

[12] Vincent, Jesse, et al., ‘‘RT: Request Tracker,’’
http://www.fsck.com/projects/rt/ .

[13] Vincent, Jesse, ‘‘enhanced-mailgate,’’ http://www.
fsck.com/pub/rt/contrib/2.0/rt-addons/enhanced-
mailgate.README .

[14] W3C, ‘‘W3C Recommendation: Simple Object
Access Protocol (SOAP) 1.1,’’ http://www.w3.org/
TR/SOAP/ .

[15] FileMaker, Inc., ‘‘FileMaker: Products: FileMaker
Pro 6,’’ http://www.filemaker.com/products/fm-home.
html .

[16] The Comprehensive Perl Archive Network, http://
www.cpan.org/ .

[17] Akin, Thomas, ‘‘Dangers of SUID Shell
Scripts.’’ Sys Admin Magazine, June 2001.

[18] Birznieks, Gunther, ‘‘CGI/Perl Taint Mode
FA Q , ’’ http://gunther.web66.com/FAQS/taintmode.
html .

[19] van den Berg, Stephen R., Philip Guenther, et al.,
‘‘Procmail,’’ http://www.procmail.org/ .

[20] UserLand Software, et al., ‘‘XML-RPC,’’ http://
www.xml-rpc.org/ .

[21] W3C, ‘‘W3C Recommendation: XSL Transfor-
mations (XSLT) Version 1.0,’’ http://www.w3.org/
TR/xslt/ .

[22] Free Software Foundation, et al., ‘‘GNATS,’’
http://www.gnu.org/software/gnats/ .

[23] Pierce, Clinton, ‘‘The Igor System Administra-
tion Tool,’’ Proceedings of the Tenth Usenix
System Administration Conference, Sept. 1996.

12 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

