Inside Livedournal's Backend

“holy hell that's a lot of hits!”

November 2004

Brad Fitzpatrick <brad@danga.com>
Lisa Phillips <lisa@danga.com>

Danga Interactive
danga.com / livejournal.com

SOMERIGHTS RESERLIED

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/1.0/ or send a letter to
Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Administrivia

* Question Policy
— Anytime... interrupt!
— also at end
* Slides online:
- http://www.danga.com/words/

The Plan

Livedournal overview
Scaling history
Perlbal

- load balancer

memcached

— distributed caching

MogileFS

— distributed filesystem
Wrap-up

— Monitoring

- Software/Architecture overview
Future

LivedJournal Overview

college hobby project, Apr 1999

blogging, forums

aggregator, social-networking (‘friends')

5+ million accounts; ~half active

* 50M+ dynamic page views/day. 1k+/s at
peak hours (old data)

* why it's interesting to you...

- 100+ servers

- lots of Open Source:
* existing open source:
- Linux, Debian, Apache, perl, mod_perl, MySQL, ...
¢ Our open source
- memcached, perlbal, mogilefs, livejournal server, ...

LivedJournal Backend

(as of a few months ago)

Akamal |(ooooo
- o === web request
A4 ” - secure request
User Internet Internap == mail r_E[I”EEt]}
=== USErpic reque
- conditional
Il

Secure s U database
G erUers ‘ \ BiglP Mail user data

Proxy | *—.4'

Web } Pool of Peers
I_'—
o
web |} MEMCACHE n
NP 7| servers Pool of Master/Sla
 — 00 aster/alaves
=
Jesus =
il
o GLOBAL
05T CLUSTER
[m]
[m]
m|

[[= = = I = s I = = v [= s Y = = i I = s I o O = i I = s Y = = s I o = I = = i I = Y Y = O o = I = = Y = = i I = o = = s = = = = o
]]]]

]]]
CartmanJH Chef JH Santa rg’-‘ Green JI" Riheyergn Big Buned4 Eyndit:atiun4

USER CLUSTERS |

I * From 1 server to 100+....
- where it hurts
I - how to fix
* Learn from this!
- don't repeat my mistakes
— can implement much of our design on a single
server

Backend Evolution

I * shared server (killed it)
I * dedicated server (killed it)

One Server

— still hurting, but could tune it
- learned Unix pretty quickly
- CGl to FastCGil

* Simple

N

I * Site gets slow eventually.
I - reach point where tuning doesn't help

One Server - Problems

* single point of failure

* Need servers
- start “paid accounts”

Two Servers

* Paid account revenue buys:
- Kenny: 6U Dell web server
- Cartman: 6U Dell database

server
* bigger / extra disks

* Network simple
- 2 NICs each

e Cartman runs MySQL on
Internal network

I Two Servers - Problems

* Two points of failure
I * No hot or cold spares

* Site gets slow again.
- CPU-bound on web node
- heed more web nodes...

I * Buy two more web nodes (1U this time)
- Kyle, Stan
e QOverview: 3 webs, 1 db
* Now we need to load-balance!

- Kept Kenny as gateway to outside world
- mod_backhand amongst 'em all

Four Servers

=1 |
—— @

I * web nodes broadcasting their state

- free/busy apache children
- system load

mod_backhand

* internally proxying requests around
- network cheap

I * Points of failure:
- database
I - kenny (but could switch to another gateway
easily when needed, or used heartbeat, but we
didn't)
e Site gets slow...
- 10-bound
- need another database server ...
- ... how to use another database?

Four Servers - Problems

Five Servers
introducing MySQL replication

* We buy a new database server
* MySQL replication

* Writes to Cartman (master)

* Reads from both

Writes/
Reads

~
\ T Replication
|

Reads

Slave

I e get db_handle() : $dbh
— existing
I * get_db _reader() : $dbr
— transition to this
- weighted selection
* permissions: slaves select-only
- mysql option for this now
* be prepared for replication lag

- easy to detect in MySQL 4.x
— user actions from $dbh, not $dbr

Replication Implementation

More Servers

Site's fast for a while,
Then slow
More web servers,

More database slaves, |

10 vs CPU fight

BIG-IP load balancers

- cheap from usenet

- LVS would work too

- nowadays: wackamole

FFFFFFF

Chaos!

Where we're at...

Internap

Secure
SErvers

HetApp

Weh
Servers

==
Jesus J

MEMCACHE

hEY
web request
secure request
mail request
userpic request
conditional
fatabase

user data

—J)

Pool of Peers

—

Pool of Master/Slaves

CartmanJH

Chef rg’-‘

_Sants JW

Green JI"

Big Buned4

Eyndit:atiun4

USER CLUSTERS |

I Problems with Architecture

I “This don t scale...”

e Slaves upon slaves doesn't scale well...
— only spreads reads

w/ 1 server w/ 2 servers

500 reads/s

250 reads/s

200 write/s

250 reads/s

200 writes/s 200 write/s

Eventually...

* databases eventual consumed by writing

400

write/s

400

write/s |

400 |
Wwrite/s

400
write/s

400

write/s

400 |
write/s

400
write/s

I Not to mention,
* Database master is point of failure
I * Reparenting slaves on master failure tricky at

best
— (without downtime)

I Spreading Writes

* Our database machines already did RAID

* We did backups

* So why put user data on 6+ slave machines?
(~12+ disks)
— overkill redundancy
— wasting time writing everywhere

I Introducing User Clusters
* Already had get db handle() vs
get db reader()
* Specialized handles:

* Partition dataset
- can't join. don't care. never join user data w/
other user data

* Each user assigned to a cluster number
* Each cluster has multiple machines

- writes self-contained in cluster (writing to 2-3
machines, not 6)

I User Cluster Implementation

e $u = LJ::load user(“brad”)
— hits global cluster
— $u object contains its clusterid

* $dbcm = LJ::get_cluster _master($u)
- writes
— definitive reads

* $dbcr = LJ::get_cluster reader($u)
- reads

User Clusters

SELECT userid,
clusterid FROM

/ \ 12 User Cluster 3

Global Slave

—
—

* almost resembles today's architecture

userid: 839

Clusterid: 2 User Cluster 2

SELECT
FROM

user WHERE WHERE
user="'bob' userid=839
NE= \

OMG i like
totally hate
my parents
they just
dont
understand me
and i h8 the
world omg 1lol

rofl *! /-
AN .

add me as a
friend!!!

I * per-user numberspaces
I - can't use AUTO INCREMENT

User Cluster Implementation

— avoid it also on final column in multi-col index:

(MylSAM-only feature)
* CREATE TABLE foo (uid INT, postid INT
AUTO INCREMENT, PRIMARY KEY (userid, postid))

°* moving users around clusters
- very, very paranoid mover

— user-moving harness
* job server that coordinates, distributed long-lived
user-mover clients who ask for tasks

- balancing disk 1/O

- balance disk space
* archive inactive users to space-efficient MylISAM

I DBI::Role — DB Load Balancing

I * Our library on top of DBI
I - GPL; not packaged anywhere but our cvs

* Returns handles given a role name
- master (writes), slave (reads)
— directory (innodb), ...
- cluster<n>{,slave,a,b}
- Can cache connections within a request or
forever

* Verifies connections from previous request
* Realtime balancing of DB nodes within a role

- web / CLI interfaces (not part of library)
- dynamic reweighting when node down

Where we're at...

hEY
web request

secure request
=== mail request

userpic request

conditional
7] database

user data

—J)

Pool of Peers

—

Pool of Master/Slaves

Internap

Secure
SErvers

MEMCACHE

HetApp

CartmanJH Chef JH Santa rg’-‘ Green JI" Riheyergn Big Buned4 Eyndit:atiun4

USER CLUSTERS |

- lame
* n x User cluster masters
- n X lame.

e Slave reliance
— one dies, others reading too much

Points of Failure

* 1 x Global master

Solution?

Master-Master Clusters!

— two identical machines per cluster
* both “good” machines

- do all reads/writes to one at a time, both
replicate from each other

- intentionally only use half our DB hardware at a
time to be prepared for crashes

- easy maintenance by flipping active node

- backup from inactive node

TA B

I * failover can't break replication, be it:
I — automatic

Master-Master Preregs

* be prepared for flapping
- by hand
* probably have other problems if swapping, don't need
more breakage

* fun/tricky part is number allocation
— same number allocated on both pairs
- avoid AUTO INCREMENT
— cross-replicate, explode.
- do your own sequence generation w/ locking, 3™
party arbitrator, odd/even, centralized, etc...

I Cold Co-Master

* inactive pair isn't getting reads

but not useful (few min to hours)
* switch at night, or
* sniff reads on active pair, replay to inactive

guy Clients

v !

I * after switching active machine, caches full,

Hot cache,
happy.

Cold cache,
sad. TA

Summary Thus Far

Dual BIG-IPs (or LVS+heartbeat, or..)
~40 web servers

1 “global cluster”:
— non-user/multi-user data
— what user is where?

- master-slave (lame)
* point of failure; only cold spares

* pretty small dataset (<4 GB)
- future: MySQL Cluster!
* in memory, shared-nothing, 99.999% uptime

bunch of “user clusters”:
- master-slave (old ones)
- master-master (new ones)

Static files...

web request
secure request
mail request
userpic request
conditional
fatabase

Directory

Internet

Internap

ioQ

SH

user data

Secure ‘ \ . 1
SErvers BiglP

rIllrmq.ur } L.J

Web Pool of Peers
I_'—
Web MEMCACHE n
HetApp pdo
SErvers
Pool of Master/Slaves
=
Jesus =
b |
o GLOBAL
05T CLUSTER
[m]
[m]
m|

[[= = = I = s I = = v [= s Y = = i I = s I o O = i I = s Y = = s I o = I = = i I = Y Y = O o = I = = Y = = i I = o = = s = = = = o
]]]]]

CartmanJH

]
Chef rg’-‘

Big Buned4

Eyndit:atiun4

_Sants JW

Green JI"

]
Ribeye rg’]

USER CLUSTERS |

I e static content
I - images, CSS

Dynamic vs. Static Content

- TUX, epoll-thttpd, etc. w/ thousands conns
- boring, easy
* dynamic content

— session-aware
* site theme
* browsing language
— security on items
- deal with heavy (memory hog) processes

- exciting, harder

Misc MySQL Machines

Akamai |Doooo
I i o === web request
o - . secure request
Directory o
User Internet Internap mail request
=== Userpic request
conditional
Secure 7] database
Servers user data
Pool of Peers
web [k MEMCACHE n
Hethpp oo Servers .
Pool of Master/Slaves
| ==
BEEUE - .

GLOBAL

05T CLUSTER
]
]
]
I OO0 000000 00000000 00000000 00000000 O0OO0OO0O0OOO0oDOOO0OO0OOoO0o0Oao
]]]]]]]
CartmanJH Chef JH Santarg"‘ GreenJI" Riheyergn Big Buned4 Eyndit:atiun4

USER CLUSTERS |

I MyISAM vs. InnoDB

I * We use both
I * MyISAM
- fast for reading xor writing,
- bad concurrency, compact,
- no foreign keys, constraints, etc
- easy to admin
- logs
* InnoDB
- ACID

- wonderful concurrency
* long slow queries while updates continue
* directory server

- detects hardware failures (bad memory/disks)

I MyISAM & InnoDB memory
I requirements

* index vs. data caching

* MylSAM caches indexes in memory
- 32-bit machines w/ 8GB of memory: 2 GB of
Indexes in userspace, ~4GB of data cache in
kernel buffer cache

* InnoDB

— primary key is clustered index
— indexes and data cached in userspace

- kernel caching can be useless/harmful
* O DIRECT helps a lot

- caveat: linux 2.6 problems being fixed: XFS race, other
filesystems have concurrency issues (one thread per file)

* alternatively, raw partitions

- begs for 64-bit

I MyISAM to InnoDB

I e don't run both on same machine
I - InnoDB starves MyISAM disk-wise

- separate caches which fight
* one big cache better than two small ones

* MylSAM concurrency hack:
- multiple dbs per machine. lame.

I Postfix & MySQL

I * 4 postfix servers
- load balance incoming connections w/ BIG-IP
— each runs tiny MySQL install

* replicates one table (email_aliases)
* Incoming mail uses mysqgl map type
- To: brad@livejournal.com
- SELECT email FROM email_aliases WHERE
alias='brad@livejournal.com’

* Don't have rebuild huge DBM files every few
minutes

Logging to MySQL

mod_perl logging handler
new table per hour

- MyISAM

Apache access logging off

- diskless web nodes, PXE boot
— apache error logs through syslog-ng

INSERT DELAYED
- increase your insert buffer if querying

minimal/no indexes
- table scans are fine

background job doing log analysis/rotation

Load Balancing!

Akamai |Doooo
' = === weh request
o || - secure request
User Internet Internap mail request
=== Userpic request
B conditional
- - database
Secure . . O
G erUers BiglP \ Mail user data
1 L —
o
Proxy li “‘J
Web Pool of Peers
web |h MEMCACHE n
Hethpp oo Servers
——————— | Pool of Master/Slaves
==
Jesus =
S
u GLOBAL
05T CLUSTER
]
]
]

[[= = = I = s I = = v [= s Y = = i I = s I o O = i I = s Y = = s I o = I = = i I = Y Y = O o = I = = Y = = i I = o = = s = = = = o
]]]]]

]]
CartmanJH Chef JH Santa rg’-‘ Green JI" Riheyergn Big Buned4 Eyndit:atiun4

USER CLUSTERS |

I Load Balancing Problem
I Overview

* slow clients (hogging mod_perl/php)
I - even DSL/Cable is “slow”

- need to spoon-feed clients
* who will buffer?

* heterogeneous hardware and response
latencies

- load balancing algorithms
— unlucky, clogged nodes

* dealing with backend failures

* The “Listen Backlog Problem”
- is proxy/client talking to kernel or apache?

* live config changes

I Two proxy / load balancing
I layers

* 1: IP-level proxy
I - little or no buffering

* 1 or 2 machines
- hot spare, stateful failover

* finite memory
- Gbps+ switching
* 2: HTTP-level proxy
- more machines
- buffer here

I * Options:

I — Commercial:

Proxy layer 1: IP-level

* BIG-IP, Alteon, Foundry, etc, etc...

- Open Source:
e Linux Virtual Server, Wackamole*

* load balance methods:
- round robin, weighted round robin
— least connections

* some have L7 capabilities
- useful, but still need another proxy layer...

I * Options:
I - mod_ proxy

Proxy layer 2: HTTP-level

* “typical” setup with mod_perl

* to one host by default

* mod_rewrite + external map program (prg:) with
mod_proxy dest ([P])

- broadcast Apache free/idle status from Apache scoreboard
- flakey

* “proxy connect error” to clients
- pound
- mod_backhand
- Squid
- plb (pure load balancer)
* Frustrated, needy, we wrote our own...

Perlbal

Perl
uses Linux 2.6's epoll
single threaded, event-based

console / HTTP remote management
- live config changes

handles dead nodes

static webserver mode

- sendfile(), async stat() / open()
plug-ins

- GIF/PNG altering

Perlbal: Persistent Connections

* persistent connections
— perlbal to backends (mod_perls)
- know exactly when a connection is ready for a

new request
* keeps backends busy

e connection known good
— tied to mod_perl, not kernel

* verifies new connections
— one new pending connect per backend
- verifies backend connection
* OPTIONS request w/ keep-alive
* response quick for apache
* multiple queues

- free vs. paid user queues

I Perlbal: cooperative large file
I serving

* large file serving w/ mod_perl bad...
I - buffering

* internal redirects
- to URLs (plural) or file path

* (hence Perlbal's web server mode)
- client sees no HT TP redirect

* The path:

- Perlbal advertises “X-Proxy-Capability: reproxy”
to backend

- backend (mod_perl) does path trans & auth,
sees proxy capability, sends URL/path back in

header, not response
* let mod_perl do hard stuff, not push bytes around

Internal redirect picture

i .

1.HTTP request T 6. Merged Response (3's headers, 5's body)

Perl ba I 5. Response
2. HTTP reguest w/
#-Proxy-Capabilities: reproxy \
4. Request
5 JHetEsiEs, TUX, thttpd,
¥-Reproxy-URL: http://, http:// mogstured
mod_perl
TUX thitpd, | [

mogstored

D000

MogileFS: distributed filesystem

* looked into Lustre, GFS, scared of in-
development status

* MogileFS main ideas:
—- files belong to classes
* classes: minimum replica counts (thumbnails == 1)

- track what devices (disks) files are on
* states: up, temp_down, dead

— keep replicas on devices on different hosts
* Screw RAID! (for this, for databases it's good.)

— multiple tracker databases
* all share same MySQL cluster database

- big, cheap disks (12 x 250GB SATA in 3U)
- dumb storage nodes

MogileFS components

* clients
- small, simple Perl library
I - FUSE filesystem driver (unfinished)
* trackers
- interface between client protocol and MySQL
Cluster

* MySQL Cluster

- In memory, multiple machines

e Storage nodes

- NFS or HTTP transport
* [Linux] NFS incredibly problematic

- HTTP transport is Perlbal with PUT & DELETE
enabled

FotoBilder image
GET request

Caching!

User

Akamai |Doooo

F o

]

| :
Internet Internap

ioQ

Secure
SErvers
L

Hethpp oo Servers
==
Jesus
I | o
]
[a = =]
]
]
]
O

GLOBAL
CLUSTER

MEMCACHE

SH

web request
secure request
mail request
userpic request
conditional
fatabase

user data

—J)

Pool of Peers

—

Pool of Master/Slaves

[[= = = I = s I = = v [= s Y = = i I = s I o O = i I = s Y = = s I o = I = = i I = Y Y = O o = I = = Y = = i I = o = = s = = = = o

]

]

]

]

]

Big Buned4

Eyndit:atiun4

CartmanJH

]
Chef rg’-‘

_Sants JW

Green JI"

]
Ribeye rg’]

USER CLUSTERS |

I * caching's key to performance
I e can't hit the DB all the time

Caching

- MyISAM: major r/w concurrency problems

- InnoDB: good concurrency
* not as fast as memory

- MySQL has to parse your queries all the time
* better with new MySQL 4.1 binary protocol
* Where to cache?

- mod_perl caching (address space per apache child)

- shared memory (limited to single machine, same with
Java/C#/Mono)

- MySQL query cache: flushed per update, small max
Size

- HEAP tables: fixed length rows, small max size

memcached

http://www.danga.com/memcached/

our Open Source, distributed caching system
run instances wherever there's free memory
no “master node”

clients distribute requests

In use by:

- Livedournal, Slashdot, Wikipedia, Meetup, malil
systems, efc...

protocol simple and XML-free; clients for:

- perl, java, php(x3), python, ruby, C(?)...

How memcached works

* requests hashed out amongst instance

“buckets”
- CRC32("key”) = 383472 % num_buckets = 6
- bucket 23 ... server 10.1.0.23: send: "key” =

T ”
value
3 hosts, 7 buckets; 512 MB = 1 bucket (arbitrary)

10.1.0.18 10.1.0.20 10.1.0.23
1024 MB; buckets 0-1 2048 MB; buckets 2-5 512 MB; bucket 6

weather = dismal key = value
tu:29323 = 1091029955

memcached — speed

C

— prototype Perl version proved concept, too slow
async |O, event-driven, single-threaded
libevent (epoll, kqueue, select, poll...)

- run-time mode selection

lockless, refcounted objects

slab allocator

— glibc malloc died after 7~8 days
* variable sized allocations, long life = difficult

- slabs: no address space fragmentation ever.
O(1) operations

- hash table, LRU cache

multi-server parallel fetch (can't do in DBI)

I * 10 unique hosts
I - none dedicated, whatever has extra memory

LivedJournal and memcached

e 28 instances (512 MB = 1 bucket)
30 GB of cached data
* 90-93% hit rate

— not necessarily 90-93% less queries:

* FROM foo WHERE id IN (1, 2, 3)
* would be 3 memcache hits; 1 mysqgl query

- 90-93% potential disk seeks?

* 12 GB machine w/ five 2GB instances
- left-over 'big' machines from our learn-to-scale-
out days

* ~100,000 queries/second at peaks

I What to Cache

I * Everything?
I e Start with stuff that's hot

* Look at your logs
- query log
— update log
- slow log
* Control MySQL logging at runtime
- can't
* (been bugging them)
- sniff the queries! Net::Pcap
° count
- add identifiers: SELECT /* name=foo */

I °* more code

I — using
— populating
— Invalidating
- easy, if your API is clean

* conceptually lame

— database should do it

* kinda.

* database doesn't know obiject lifetimes
- putting memcached between app and DB doesn't work

* more stuff to admin
- but memcached is easy
— one real option: memory to use

Caching Disadvantages

memcached TODO

* Very little
- It Works.
- have memcached processes w/ 190 day uptimes
* use tmpfs/ramfs? maybe.
- eliminate 3GB limit on 32-bit machines
- use even less CPU (sendfile from tmpfs)
* new memory allocator? maybe.
* virtual buckets & memcached bucket
manager(s). definitely.
- grow/shrink memcached farm at run-time

- solves flapping problem if client re-hashes and
can't detect old data

I MySQL Persistent Connection
I Woes

* connections == threads == memory

* max threads
- limit max memory

* with 10 user clusters:
- Bob is on cluster 5
— Alice on cluser 6
- Do you need Bob's DB handles alive while you
process Alice's request?

* Major wins by disabling persistent conns
— still use persistent memcached conns
- db hits are rare (well, 14,000 queries/secod)

- mysqgl conns quick (opposed to, say, Oracle)
* watch out for local port exhaustion

I * Cricket, Nagios

I - lots of custom Nagios plugins

Monitoring

* |nteractive real-time tools...

il

1 jlzrimace:™3
1 jigrimace:™% docheck.pl
111 gnZ repl: - <41> conn: 0F 214 UTC {master, oldids)
22 blue 111 ()
17 g=1 111 repl: 121 conn: 17 B85 PST (=Z=zlave)
8 Jjesus 12 repl: 0 conn: 17 92 PST (=lave)
45 mackey 111 repl: 0 conn: 0F 1 PDT (=low)
18 red 111 repl: 16832 conn: B B0 PST (=lawve)
14 bebe 111 repl: 0 conn: 0F 24 PODT {(email)
10 garrison 111 repl R conn: 0F 1 PDT {directory)
7 oobbles 111 repl: 0 conn: 0F 14 PST (email)
162 kyle 111 repl: - conn: OF 1 PDT)
183 terrance 111 repl: 0 conn: OF 16 PDT ()
134 tender 135 repl: 1788 <17> conn: B/ 24 PDT {clusterlia)
135 loin 134 repl: 3858 <40 conn: 157 25 PDT {clusterlOh)
12 chef repl: - < 2% connt 0 16 PDT {cluster20, clusterZiszslave)
19 orange 12 repl: 0 conn: 17 8 UTC (clusterZlszlave)
21 highoned repl: - conn: OF 4 UTC (cluster?)
11 =anta repl: - < 4% conn: 0Of 15 POT {cluster3dd, clusterdlslave)
20 yellow 11 repl: 0 conn: 0F B PDT (clusterdlslave)
23 chdm repl: - <14y conn: 1/ 20 PDT {clusterdd, clusterdOmovemaster, clusterd(szslave)
24 green 23 repl: 0 conn: 3F 10 UTC (clusterdlszlave)
?6 indigo 25 repl: 0 < 8 conn: Of 8 PST (clusterflb, clusterblzlave)
23 ribeye repl: 0 < 7» conn: 4/ 19 POT {clusterBd, clusterBla, clusterSlslave)
185 beef 184 repl: 0 <8R> conn: 57 49 UTC {(cluster?Ob)
184 roast 185 repl: 510382 <82> conn: 127 B8 UTC {(cluster?0a)
112 pork 113 repl: 15269 < 7> conn: 1/ 2 PST {(clusteri0a)
113 chop 112 repl: 0 <9 conn: 27 17 PST {clusterE0h)
160 mad 161 repl: 11549 <22% conn: 76/ 80 UTC {clusterS0s)
161 cow 160 repl: 0 <26 conn: 17 16 UTC {clusterS0bh)
ERRORS:
¥ Can't connect to blue
¥ nlave not running: garrison:
1jogrimace:™3 i

cow: 485.9 gfs
SUM: 10855.2 ofs

gnZ: 1875.7 ofs

g=l: B03,1 ofs
Jezu=z: B39.5 gfs
mackey : 95,7 o=
red: BBGLGE ofs
bebe: 114.9 gf=
garrizan: 1.4 ofs
gobhles: 108.3 g/fs
kyle: 0.6 of=
terrance: 103.2 ofs
tender: 650.3 ofs

loin: 628,88 ofs
chef: 5517 0%
orange: 224.1 ogfs
bighoned: 17.5 of=
zanta: 384,89 g/f=
yellow: 192,56 gf=
cOdm: 542.7 of=
green: 2297.6 gfs
indigo: 165.8 g/=
ribeye: 490.0 ofs
beef: 241,22 ofs
rogst: 407.0 gfs
pork 33.2 ofs
chop: 890,66 gfs
mad: 356.2 o/fs
cow: 4787 ofs
SUM: 10581.9 ofs

1 jAgrimace:™% |

1 j8grimace:™3 mogcheck.pl
Checking mogilefsd availabhility,..
10,0,0,81:7001 ., responding,
10,0,0,82:7001 ., responding.,
Device information,..
hiosthame device age zizeil) used free used delay
stol devl 42s 224,514 16,246 208,075 724% 0,0050=
stol dev? 42s 229,161 10,641 215,040 4.64% 0,0357=
stol devd 42s 229,161 10,531 215,628 4.60% 0,023=
stol dewd 42s 229,161 10,556 215,970 4,62% 0,000=
stol devd 42s 229,161 10,033 215,628 4.60% 0,004=
stol deve 42s 229,161 10,657 215,505 4,65% 0,004=
stol dev? 42s 229,161 10,5951 215,608 4,.60% 00,0062
stol devs 42s 229,161 10,614 215,042 4,.63% 0,000=
stol devd 42s 229,161 10,255 215,600 4.61% 0,007=
stol devld 42s 229,161 10,474 215,657 4.07% 0,004=
stol devll 4Z2s 229,161 10,642 215,018 4.64% 0,0050=
stol devl? 42s 229,161 10,5220 215,641 4,08% 0,004=
stol devld 4Z2s 229,161 10,626 215,030 4.b4% 0,0050=
stol devld 42s 229,161 10,558 215,605 4,61% 0,0050=
stol devls 3= 224,519 10,554 215,721 4.72% 0,006z
stol devle 3= 229,161 10,264 215,092 4.61% 0,0050=
stol devl? 3= 229,161 10,624 215,057 4.b4% 0,0050=
sto? devld 3= 229,161 10,675 215,456 4,66% 0,000=
stoZ devls 3= 229,161 10,5913 215,647 4,08% 0,01%=
stol dev?l 3= 229,161 10,614 215,042 4,63% 0,000=
stol dev?l 3= 229,161 10,458 215,702 4,06% 0,004=
sto? dev?? 3= 229,161 10,057 215,065 4,62% 0,004=
stoZ dev?d 3= 229,161 10,478 215,652 4,57% 0,004=
stol dev?d 3= 229,161 10,630 215,031 4.64% 0,004=
stol dev?s 3= 229,161 10,977 215,084 4,62% 0,004=
sto? devih 3= 229,161 10,522 215,658 4,08% 0,004=
stoZ dev?? 3= 229,161 10,467 215,655 4,57% 0,023=
stol devid 3= 229,161 10,5275 215,080 4,61% 0,006z
total bA40E, 517 A01.643 BI105,174 4.71% 0,211=
1 jegrimace:™% |

10,0,
10,0,
10,0,
10,0,
10,0,
————— Pool:
10,0,
10,0,
10,0,
10,0,0,94:

0,29: free
0,28% free
0,27% free
0,231 free
0,224 free

int_web {@11@6?112&5}

0,97: free
0,961 free

0,95 free
Fi

10,0,0.,88% free
100,057 77
10,0,0,86% free
10,0,0,85: free
10,0,0,54% free
10,0,0,83% free
10,0,0,80% free
10,0,0.771 free
10,0,0,76% free
10,0,0,75% free
10,0,0,74: free
10,0,0,72% free
10,0,0.71: free
10,0,0,70% free
10,0,0,65% free
10,0,0,64: free
10,0,0,63% free
10,0,0,62: free
10,0,0,61: free
10,0,0,559% free
10,0,0.58: free
10,0,0,57% free
10,0,0.563 free
10,0,0,531 free
10,0,0.52% free
10,0,0,51: free
10,0,0,50% free
10,0,0,42: free
10,0,0,41% free
10,0,0.29% free
10,0,0,281 free
10,0,0,27% free
10,0,0.23: free
10,0,0,221 free

1 j8grimace s

m$l

1, active
7, active
o, active
0, active
1, active
7, active
b, active
13, active
8, active
d, active
14, active
13, active
9, active
7, active
10, active
12, active
15, active
11, active
13, active
&, active
12, active
a, active
12, active
4, active
11, active
9, active
d, active
14, active
0, active
7, active
7, active
&, active
7, active
A, active
2, active
2, active
1, active
7, active
o, active
1, active
1, active

=

=

'—'L.
[e I N T N ot R R N) Y O

(=
=

;2977

Y1 jaorinace:™$ watch-gueuss.pl 1

[Wed Now 17 09:04:50 2004 [free uzers gueued: 2, oldest: 0Os] [paid uzers
|led Mov 17 09304152 20043 [free users gueued: 0, oldest: Os] paid users
|led Hov 17 09:04:53 2004: free uszers gueued: 2, Dige=stl 0= [paid users
|led Mov 17 052:04:54 2004 free users gueued: 0, oldest: Os] paid users
{led Hov 17 0S2:04:55 20043 free users gueued: 2, oldesti Oz paid users
|led Moy 17 09:04:56 20043 [free users gueued: 0y olodesty Do paid users
|led Hov 17 0S:04:57 2004: [free users gueued: 5, oldest: 0Os] paid users

1.j8grimace:™$
|1 jGzrimace:™% watch-perlbal.pl 1

Wed Nov 17 09:05:03 2004: [wd7:1 - 020, 0000, 16407 [wd7:2 - 015, 0000, 1362] [wdd:l

12 - 021, 0000, 1608] [wd9:l - 014, 0000, 14427 [wd8:2 - 020, 0000, 15467 [wS0:l
022, DDDD 1583] [whl:1l - 015, 0000, 143907 [wS1:2 - 019, 0000, 1451]

| lec! Hov 17 09:05:05 2004+ [wd7:1 - 024, 0000, 1383] [wd7:2 - 0Z4, 0001, 11487 [wds:l

{2 - 017, 0000, 1330] [wd9:1l -027, 0001, 1247] [wd8:2 - 01, 0000, 13107 [w30:l
015, 0000, 1110] [whl:l - 029, 0000, 1242] [wEl:2 - 023, 0000, 1291]

lUed Nov 17 09:05:06 2004: [wd7:1 - 016, 0000, 1457] [wd7:2 - 020, 0000, 1233] [wdd:l

12 - 020, 0000, 1404] [w48:1 - 030, DDDD 133?] [wdd:? - 024, 0000, 1364] [wS0:l
014, GDDD 1182] bl =41, DDDD 1323] [w51:2 - 015, 0000, 1378]

|Ued Nov 17 09:05:07 2004: [mﬂ?:l = DEE, 000, 1543] [wd7:2 - 027, 0000, 1322] [wds:l

12 - 033, 0000, 1479] [wd9:1 - 030, 0000, 13957 [wd9:2 - 0X7, 0000, 14587 [wi0:l
022, 0000, 12567 [wSl:l - 023, 0000, 1409] [wB1:2 - 028, 0003, 1449]

led Hov 17 09:05:08 20043 [wd7:1 - 018, 0000, 16447 [wd7:2 - 025, 0000, 14067 [wds:l

2 - 021, 0600, 15681 [wiB8:1 - 026, DDDD 1&8&] [wdd:2 - 019, 0000, 15617 [wh0:l
018, DDDD 152&] [whl:l - 024, DDDS lﬂdﬂ] [w51:2 - 024, 0000, 1525]

| W Hov 17 09:05:08 2004+ [mﬂ?:l = DEE, 0000, 13597 [wd7:2 - 024, 0000, 11507 [wds:l

12— 027, 0000, 1253] [wdS:1l - 025, 0000, 12077 [wdS:2 - 026, 0000, 1322] [wad:l
| 022, 0000, 1078] [whl:l - 018, 0000, 11907 [wSl:2 - 025, 0000, 1273]
|1.j8zrinace:™% |

CueLed
gueed
gueued
oueUed
oueued
gueded
gueed

- 024,

= (e,

+ |

- 020,

=R,

=I5

3, age: 1s]
0, age: Uz
3, age: 0Os]
0, age: Os]
3, age: O]
0, age: Og]
1, age: 0Os]

QOO0 , 14197 [wa0:2

QO00, 12237 [wao:2

QO00, 12927 [wh0:2

Qo00, 1375] [we:2

Q000 , 14437 [wa0:2

QO00, 11717 [wao:2

- 019, 0000, 1359] [wds:

- 023, 0000, 11317 [wds:

- 016, 0000, 1208] [wds:

- 027, 0000, 1283] [wds:

- 022, 0000, 1359] [wds:

- 019, 0000, 11107 [wds:

Software Overview

BIG-IPs

Debian

- Linux 2.4 (phasing out)
- Linux 2.6

mod_perl

MySQL

- MyISAM, InnoDB
Perlbal

MogileFS

Nagios, Cricket, ...

I * dealing w/ vendors
I - how much can they milk from you

Non-Technical Problems

— fruit baskets

- 6-month latency on returning calls, if ever

- ... commoditize their stuff!

- we like siliconmechanics.com (local, honest)

* asset management

- servers.yam|
» atrophied often until used it for generating configs,
became useful and maintained

* incident logging
— used to keep it in our head, then too many
machines

I * few 64-bit issues
I - old MySQL codepaths (ISAM) from '97 not 64-bit

Misc Technical Problems

safe
- NUMA code crashing, XFS race, ...

e lame hardware raid

- closed specs, hard to monitor
* MegaRAID in Linux 2.6

— prefer software except for battery-backed write-

back caches
* investigated solid state disks for ext3/xfs/innodb
journals

* finding blocking (block-watcher.pl)
— application notes latency on services, reports
- lame, tedious (begs for DTrace)

I The Future

I * finish MylISAM to InnoDB transition for user

clusters
— used to be “issues” in early days, but we're fairly
happy now, esp. w/ 64-bit

* phase out old master-slave clusters
- be fully master-master active/standby

* continue moving stuff off global DB
* MySQL Cluster or automatic master-election

of 3 machines for global

- MySQL Cluster very cool (distributed, in memory
db), but the MySQL-NDB bridge immature

Questions?

Akamal |(ooooo
a - === web request
Q - secure request
User Internet Internap mail rFqUEH
=== USEerpic request
B conditional
B . fatabase
Secure H . . O
Cervers BiglP Mail user data
B
Proxy li *—lél
mog1 Web Pool of Peers
LI—
m]
web b MEMCACHE n
mogZ HetApp poo Cervers
- Pool of Master/Slaves
mog.. =
Jesus =
Ehhhal
u GLOBAL
o7 CLUSTER
[m] I
]
[m]

i = = = = = = = o = = = = = = I = I o s s = i i = = o i = = = = = = o = = = = I = = [= [o [y = s s = = = = [y

[u]

[u]

]

[u]

Cartman |||

O
Chef ’g’-l

_santa Q]

]
Green JH

]
Ribeye rg“

USER CLUSTERS | x10

Big Bunen:q

Syndicatiunri

Thank youl!

Questions to...
brad@danga.com
lisa@danga.com

Slides linked off:
http://www.danga.com/words/

