
Inside LiveJournal's Backend
or,

“holy hell that's a lot of hits!”

November 2004

Brad Fitzpatrick <brad@danga.com>
Lisa Phillips <lisa@danga.com>

Danga Interactive
danga.com / livejournal.com

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/1.0/ or send a letter to

Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Administrivia

● Question Policy
– Anytime... interrupt!
– also at end

● Slides online:
– http://www.danga.com/words/

The Plan

● LiveJournal overview
● Scaling history
● Perlbal

– load balancer
● memcached

– distributed caching
● MogileFS

– distributed filesystem
● Wrap-up

– Monitoring
– Software/Architecture overview

● Future

LiveJournal Overview

● college hobby project, Apr 1999
● blogging, forums
● aggregator, social-networking ('friends')
● 5+ million accounts; ~half active
● 50M+ dynamic page views/day. 1k+/s at

peak hours (old data)
● why it's interesting to you...

– 100+ servers
– lots of Open Source:

● existing open source:
– Linux, Debian, Apache, perl, mod_perl, MySQL, ...

● our open source
– memcached, perlbal, mogilefs, livejournal server, ...

LiveJournal Backend
(as of a few months ago)

Backend Evolution

● From 1 server to 100+....
– where it hurts
– how to fix

● Learn from this!
– don't repeat my mistakes
– can implement much of our design on a single

server

One Server

● shared server (killed it)
● dedicated server (killed it)

– still hurting, but could tune it
– learned Unix pretty quickly
– CGI to FastCGI

● Simple

One Server - Problems

● Site gets slow eventually.
– reach point where tuning doesn't help

● single point of failure
● Need servers

– start “paid accounts”

Two Servers

● Paid account revenue buys:
– Kenny: 6U Dell web server
– Cartman: 6U Dell database

server
● bigger / extra disks

● Network simple
– 2 NICs each

● Cartman runs MySQL on
internal network

Two Servers - Problems

● Two points of failure
● No hot or cold spares
● Site gets slow again.

– CPU-bound on web node
– need more web nodes...

Four Servers

● Buy two more web nodes (1U this time)
– Kyle, Stan

● Overview: 3 webs, 1 db
● Now we need to load-balance!

– Kept Kenny as gateway to outside world
– mod_backhand amongst 'em all

mod_backhand

● web nodes broadcasting their state
– free/busy apache children
– system load
– ...

● internally proxying requests around
– network cheap

Four Servers - Problems

● Points of failure:
– database
– kenny (but could switch to another gateway

easily when needed, or used heartbeat, but we
didn't)

● Site gets slow...
– IO-bound
– need another database server ...
– ... how to use another database?

Five Servers
introducing MySQL replication

● We buy a new database server
● MySQL replication
● Writes to Cartman (master)
● Reads from both

Replication Implementation

● get_db_handle() : $dbh
– existing

● get_db_reader() : $dbr
– transition to this
– weighted selection

● permissions: slaves select-only
– mysql option for this now

● be prepared for replication lag
– easy to detect in MySQL 4.x
– user actions from $dbh, not $dbr

More Servers

● Site's fast for a while,
● Then slow
● More web servers,
● More database slaves,
● ...
● IO vs CPU fight
● BIG-IP load balancers

– cheap from usenet
– LVS would work too
– nowadays: wackamole

Chaos!

Where we're at...

Problems with Architecture
or,

“This don't scale...”

● Slaves upon slaves doesn't scale well...
– only spreads reads

200 writes/s 200 write/s

500 reads/s
250 reads/s

200 write/s

250 reads/s

w/ 1 server w/ 2 servers

Eventually...

● databases eventual consumed by writing

400 write/s

3 reads/s

400
write/s

3 r/s

400 write/s

3 reads/s

400
write/s

3 r/s

400 write/s

3 reads/s

400
write/s

3 r/s

400 write/s

3 reads/s

400
write/s

3 r/s

400 write/s

3 reads/s

400
write/s

3 r/s

400 write/s

3 reads/s

400
write/s

3 r/s

400 write/s

3 reads/s

400
write/s

3 r/s

Not to mention,

● Database master is point of failure
● Reparenting slaves on master failure tricky at

best
– (without downtime)

Spreading Writes

● Our database machines already did RAID
● We did backups
● So why put user data on 6+ slave machines?

 (~12+ disks)
– overkill redundancy
– wasting time writing everywhere

Introducing User Clusters

● Already had get_db_handle() vs
get_db_reader()

● Specialized handles:
● Partition dataset

– can't join. don't care. never join user data w/
other user data

● Each user assigned to a cluster number
● Each cluster has multiple machines

– writes self-contained in cluster (writing to 2-3
machines, not 6)

User Cluster Implementation

● $u = LJ::load_user(“brad”)
– hits global cluster
– $u object contains its clusterid

● $dbcm = LJ::get_cluster_master($u)
– writes
– definitive reads

● $dbcr = LJ::get_cluster_reader($u)
– reads

User Clusters

● almost resembles today's architecture

SELECT userid,
clusterid FROM
user WHERE
user='bob'

userid: 839
clusterid: 2

SELECT
FROM ...
WHERE
userid=839 ...

OMG i like
totally hate
my parents
they just
dont
understand me
and i h8 the
world omg lol
rofl *! :^-
^^;

add me as a
friend!!!

User Cluster Implementation

● per-user numberspaces
– can't use AUTO_INCREMENT
– avoid it also on final column in multi-col index:

(MyISAM-only feature)
● CREATE TABLE foo (uid INT, postid INT

AUTO_INCREMENT, PRIMARY KEY (userid, postid))
● moving users around clusters

– very, very paranoid mover
– user-moving harness

● job server that coordinates, distributed long-lived
user-mover clients who ask for tasks

– balancing disk I/O
– balance disk space

● archive inactive users to space-efficient MyISAM

DBI::Role – DB Load Balancing

● Our library on top of DBI
– GPL; not packaged anywhere but our cvs

● Returns handles given a role name
– master (writes), slave (reads)
– directory (innodb), ...
– cluster<n>{,slave,a,b}
– Can cache connections within a request or

forever
● Verifies connections from previous request
● Realtime balancing of DB nodes within a role

– web / CLI interfaces (not part of library)
– dynamic reweighting when node down

Where we're at...

Points of Failure

● 1 x Global master
– lame

● n x User cluster masters
– n x lame.

● Slave reliance
– one dies, others reading too much

Solution?

Master-Master Clusters!

– two identical machines per cluster
● both “good” machines

– do all reads/writes to one at a time, both
replicate from each other

– intentionally only use half our DB hardware at a
time to be prepared for crashes

– easy maintenance by flipping active node
– backup from inactive node

7A 7B

Master-Master Prereqs

● failover can't break replication, be it:
– automatic

● be prepared for flapping
– by hand

● probably have other problems if swapping, don't need
more breakage

● fun/tricky part is number allocation
– same number allocated on both pairs
– avoid AUTO_INCREMENT
– cross-replicate, explode.
– do your own sequence generation w/ locking, 3rd

party arbitrator, odd/even, centralized, etc...

Cold Co-Master

● inactive pair isn't getting reads
● after switching active machine, caches full,

but not useful (few min to hours)
● switch at night, or
● sniff reads on active pair, replay to inactive

guy

7A 7B

Clients

Hot cache,
happy.

Cold cache,
sad.

Summary Thus Far

● Dual BIG-IPs (or LVS+heartbeat, or..)
● ~40 web servers
● 1 “global cluster”:

– non-user/multi-user data
– what user is where?
– master-slave (lame)

● point of failure; only cold spares
● pretty small dataset (<4 GB)

– future: MySQL Cluster!
● in memory, shared-nothing, 99.999% uptime

● bunch of “user clusters”:
– master-slave (old ones)
– master-master (new ones)

● ...

Static files...

Directory

Dynamic vs. Static Content

● static content
– images, CSS
– TUX, epoll-thttpd, etc. w/ thousands conns
– boring, easy

● dynamic content
– session-aware

● site theme
● browsing language

– security on items
– deal with heavy (memory hog) processes
– exciting, harder

Misc MySQL Machines

Directory

MyISAM vs. InnoDB

● We use both
● MyISAM

– fast for reading xor writing,
– bad concurrency, compact,
– no foreign keys, constraints, etc
– easy to admin
– logs

● InnoDB
– ACID
– wonderful concurrency

● long slow queries while updates continue
● directory server

– detects hardware failures (bad memory/disks)

MyISAM & InnoDB memory
requirements

● index vs. data caching
● MyISAM caches indexes in memory

– 32-bit machines w/ 8GB of memory: 2 GB of
indexes in userspace, ~4GB of data cache in
kernel buffer cache

● InnoDB
– primary key is clustered index
– indexes and data cached in userspace
– kernel caching can be useless/harmful

● O_DIRECT helps a lot
– caveat: linux 2.6 problems being fixed: XFS race, other

filesystems have concurrency issues (one thread per file)
● alternatively, raw partitions

– begs for 64-bit

MyISAM to InnoDB

● don't run both on same machine
– InnoDB starves MyISAM disk-wise
– separate caches which fight

● one big cache better than two small ones
● MyISAM concurrency hack:

– multiple dbs per machine. lame.

Postfix & MySQL

● 4 postfix servers
– load balance incoming connections w/ BIG-IP
– each runs tiny MySQL install

● replicates one table (email_aliases)
● Incoming mail uses mysql map type

– To: brad@livejournal.com
– SELECT email FROM email_aliases WHERE

alias='brad@livejournal.com'
● Don't have rebuild huge DBM files every few

minutes

Logging to MySQL

● mod_perl logging handler
● new table per hour

– MyISAM
● Apache access logging off

– diskless web nodes, PXE boot
– apache error logs through syslog-ng

● INSERT DELAYED
– increase your insert buffer if querying

● minimal/no indexes
– table scans are fine

● background job doing log analysis/rotation

Load Balancing!

Load Balancing Problem
Overview

● slow clients (hogging mod_perl/php)
– even DSL/Cable is “slow”
– need to spoon-feed clients

● who will buffer?
● heterogeneous hardware and response

latencies
– load balancing algorithms
– unlucky, clogged nodes

● dealing with backend failures
● The “Listen Backlog Problem”

– is proxy/client talking to kernel or apache?
● live config changes

Two proxy / load balancing
layers

● 1: IP-level proxy
– little or no buffering

● 1 or 2 machines
– hot spare, stateful failover

● finite memory
– Gbps+ switching

● 2: HTTP-level proxy
– more machines
– buffer here

Proxy layer 1: IP-level

● Options:
– Commercial:

● BIG-IP, Alteon, Foundry, etc, etc...
– Open Source:

● Linux Virtual Server, Wackamole*
● load balance methods:

– round robin, weighted round robin
– least connections

● some have L7 capabilities
– useful, but still need another proxy layer...

Proxy layer 2: HTTP-level

● Options:
– mod_proxy

● “typical” setup with mod_perl
● to one host by default
● mod_rewrite + external map program (prg:) with

mod_proxy dest ([P])
– broadcast Apache free/idle status from Apache scoreboard
– flakey

● “proxy connect error” to clients
– pound
– mod_backhand
– Squid
– plb (pure load balancer)

● Frustrated, needy, we wrote our own...

Perlbal

● Perl
● uses Linux 2.6's epoll
● single threaded, event-based
● console / HTTP remote management

– live config changes
● handles dead nodes
● static webserver mode

– sendfile(), async stat() / open()
● plug-ins

– GIF/PNG altering
● ...

Perlbal: Persistent Connections

● persistent connections
– perlbal to backends (mod_perls)
– know exactly when a connection is ready for a

new request
● keeps backends busy
● connection known good

– tied to mod_perl, not kernel
● verifies new connections

– one new pending connect per backend
– verifies backend connection

● OPTIONS request w/ keep-alive
● response quick for apache

● multiple queues
– free vs. paid user queues

Perlbal: cooperative large file
serving

● large file serving w/ mod_perl bad...
– buffering

● internal redirects
– to URLs (plural) or file path

● (hence Perlbal's web server mode)
– client sees no HTTP redirect

● The path:
– Perlbal advertises “X-Proxy-Capability: reproxy”

to backend
– backend (mod_perl) does path trans & auth,

sees proxy capability, sends URL/path back in
header, not response

● let mod_perl do hard stuff, not push bytes around

Internal redirect picture

MogileFS: distributed filesystem

● looked into Lustre, GFS, scared of in-
development status

● MogileFS main ideas:
– files belong to classes

● classes: minimum replica counts (thumbnails == 1)
– track what devices (disks) files are on

● states: up, temp_down, dead
– keep replicas on devices on different hosts

● Screw RAID! (for this, for databases it's good.)
– multiple tracker databases

● all share same MySQL cluster database
– big, cheap disks (12 x 250GB SATA in 3U)
– dumb storage nodes

MogileFS components

● clients
– small, simple Perl library
– FUSE filesystem driver (unfinished)

● trackers
– interface between client protocol and MySQL

Cluster
● MySQL Cluster

– in memory, multiple machines
● Storage nodes

– NFS or HTTP transport
● [Linux] NFS incredibly problematic

– HTTP transport is Perlbal with PUT & DELETE
enabled

Large
file GET
request

Caching!

Caching

● caching's key to performance
● can't hit the DB all the time

– MyISAM: major r/w concurrency problems
– InnoDB: good concurrency

● not as fast as memory
– MySQL has to parse your queries all the time

● better with new MySQL 4.1 binary protocol
● Where to cache?

– mod_perl caching (address space per apache child)
– shared memory (limited to single machine, same with

Java/C#/Mono)
– MySQL query cache: flushed per update, small max

size
– HEAP tables: fixed length rows, small max size

● our Open Source, distributed caching system
● run instances wherever there's free memory
● no “master node”
● clients distribute requests
● In use by:

– LiveJournal, Slashdot, Wikipedia, Meetup, mail
systems, etc...

● protocol simple and XML-free; clients for:
– perl, java, php(x3), python, ruby, C(?)...

memcached
http://www.danga.com/memcached/

How memcached works

● requests hashed out amongst instance
“buckets”
– CRC32(“key”) = 383472 % num_buckets = 6
– bucket 23 ... server 10.1.0.23: send: “key” =

“value”

10.1.0.18
1024 MB; buckets 0-1

10.1.0.23
512 MB; bucket 6

10.1.0.20
2048 MB; buckets 2-5

key = valueweather = dismal
tu:29323 = 1091029955

3 hosts, 7 buckets; 512 MB = 1 bucket (arbitrary)

memcached – speed

● C
– prototype Perl version proved concept, too slow

● async IO, event-driven, single-threaded
● libevent (epoll, kqueue, select, poll...)

– run-time mode selection
● lockless, refcounted objects
● slab allocator

– glibc malloc died after 7~8 days
● variable sized allocations, long life = difficult

– slabs: no address space fragmentation ever.
● O(1) operations

– hash table, LRU cache
● multi-server parallel fetch (can't do in DBI)

LiveJournal and memcached

● 10 unique hosts
– none dedicated, whatever has extra memory

● 28 instances (512 MB = 1 bucket)
● 30 GB of cached data
● 90-93% hit rate

– not necessarily 90-93% less queries:
● FROM foo WHERE id IN (1, 2, 3)
● would be 3 memcache hits; 1 mysql query

– 90-93% potential disk seeks?
● 12 GB machine w/ five 2GB instances

– left-over 'big' machines from our learn-to-scale-
out days

● ~100,000 queries/second at peaks

What to Cache

● Everything?
● Start with stuff that's hot
● Look at your logs

– query log
– update log
– slow log

● Control MySQL logging at runtime
– can't

● (been bugging them)
– sniff the queries! Net::Pcap

● count
– add identifiers: SELECT /* name=foo */

Caching Disadvantages

● more code
– using
– populating
– invalidating
– easy, if your API is clean

● conceptually lame
– database should do it

● kinda.
● database doesn't know object lifetimes

– putting memcached between app and DB doesn't work
● more stuff to admin

– but memcached is easy
– one real option: memory to use

memcached TODO

● Very little
– It Works.
– have memcached processes w/ 190 day uptimes

● use tmpfs/ramfs? maybe.
– eliminate 3GB limit on 32-bit machines
– use even less CPU (sendfile from tmpfs)

● new memory allocator? maybe.
● virtual buckets & memcached bucket

manager(s). definitely.
– grow/shrink memcached farm at run-time
– solves flapping problem if client re-hashes and

can't detect old data

MySQL Persistent Connection
Woes

● connections == threads == memory
● max threads

– limit max memory
● with 10 user clusters:

– Bob is on cluster 5
– Alice on cluser 6
– Do you need Bob's DB handles alive while you

process Alice's request?
● Major wins by disabling persistent conns

– still use persistent memcached conns
– db hits are rare (well, 14,000 queries/secod)
– mysql conns quick (opposed to, say, Oracle)

● watch out for local port exhaustion

Monitoring

● Cricket, Nagios
– lots of custom Nagios plugins

● Interactive real-time tools...

Software Overview

● BIG-IPs
● Debian

– Linux 2.4 (phasing out)
– Linux 2.6

● mod_perl
● MySQL

– MyISAM, InnoDB
● Perlbal
● MogileFS
● Nagios, Cricket, ...

Non-Technical Problems

● dealing w/ vendors
– how much can they milk from you
– fruit baskets
– 6-month latency on returning calls, if ever
– ... commoditize their stuff!
– we like siliconmechanics.com (local, honest)

● asset management
– servers.yaml

● atrophied often until used it for generating configs,
became useful and maintained

● incident logging
– used to keep it in our head, then too many

machines

Misc Technical Problems

● few 64-bit issues
– old MySQL codepaths (ISAM) from '97 not 64-bit

safe
– NUMA code crashing, XFS race, ...

● lame hardware raid
– closed specs, hard to monitor

● MegaRAID in Linux 2.6
– prefer software except for battery-backed write-

back caches
● investigated solid state disks for ext3/xfs/innodb

journals
● finding blocking (block-watcher.pl)

– application notes latency on services, reports
– lame, tedious (begs for DTrace)

The Future

● finish MyISAM to InnoDB transition for user
clusters
– used to be “issues” in early days, but we're fairly

happy now, esp. w/ 64-bit
● phase out old master-slave clusters

– be fully master-master active/standby
● continue moving stuff off global DB
● MySQL Cluster or automatic master-election

of 3 machines for global
– MySQL Cluster very cool (distributed, in memory

db), but the MySQL-NDB bridge immature

Questions?

mog1

mog2

mog..

x10

Thank you!

Questions to...
brad@danga.com
lisa@danga.com

Slides linked off:
http://www.danga.com/words/

