














Traps. Vx32 translates instructions like int, syscall,
and sysenter, which normally generate hardware traps,
into code sequences that generate virtual traps instead:
they record the trap code and then cause vx32 to return
to its caller, allowing the host application to handle the
trap as it wishes. Typical applications look for a specific
trap code to interpret as a “virtual system call” and treat
any other trap as reason to terminate the guest.

Privileged or unsafe instructions. Vx32 translates
privileged or unsafe instructions (for example, kernel-
mode instructions or those user-mode instructions that
manipulate the segment registers) into sequences that
generate (virtual) illegal instruction traps.

3.4 Exception handling
With help from the host OS, vx32 catches processor ex-
ceptions in guest code—for example, segmentation vi-
olations and floating point exceptions—and turns them
into virtual traps, returning control to the host application
with full information about the exception that occurred.

Since the eip reported by the host OS on such an ex-
ception points into one of vx32’s code translations, vx32
must translate this eip back to the corresponding eip
in the guest’s original instruction stream in order for it
to make sense to the host application or the developer.
To recover this information, vx32 first locates the trans-
lation fragment containing the current eip and converts
the eip’s offset within the fragment to an offset from the
guest code address corresponding to the fragment.

To locate the translation fragment containing the trap-
ping eip efficiently, vx32 organizes the code fragment
cache into two sections as shown earlier in Figure 2:
the code translations and instruction offset tables are al-
located from the bottom up, and the fragment index is
allocated from the top down. The top-down portion of
the cache is thus a table of all the translation fragments,
sorted in reverse order by fragment address. The excep-
tion handler uses a binary search in this table to find the
fragment containing a particular eip as well as the hint
table constructed during translation.

Once vx32’s exception handler has located the correct
fragment, it performs a second binary search, this one in
the fragment’s hint table, to find the exact address of the
guest instruction corresponding to the current eip.

Once the exception handler has translated the fault-
ing eip, it can finally copy the other guest registers un-
changed and exit the guest execution loop, transferring
control back to the host application to handle the fault.

3.5 Usage
Vx32 is a generic virtual execution library; applications
decide how to use it. Typically, applications use vx32
to execute guest code in a simple control loop: load a
register set into the vx32 instance, and call vx32’s run

function; when run eventually returns a virtual trap code,
handle the virtual trap; repeat. Diversity in vx32 appli-
cations arises from what meaning they assign to these
traps. Section 5 describes a variety of vx32 applications
and evaluates vx32 in those contexts.

Vx32 allows the creation of multiple guest contexts
that can be run independently. In a multithreaded host
application, different host threads can run different guest
contexts simultaneously with no interference.

4 Vx32 Evaluation
This section evaluates vx32 in isolation, comparing
vx32’s execution against native execution through mi-
crobenchmarks and whole-system benchmarks. Sec-
tion 5 evaluates vx32 in the context of real applications.
Both sections present experiments run on a variety of test
machines, listed in Figure 4.

4.1 Implementation complexity
The vx32 sandbox library consists of 3,800 lines of C
(1,500 semicolons) and 500 lines of x86 assembly lan-
guage. The code translator makes up about half of the
C code. Vx32 runs on Linux, FreeBSD, and Mac OS X
without kernel modifications or access to privileged op-
erating system features.

In addition to the library itself, the vx32 system pro-
vides a GNU compiler toolchain and a BSD-derived C
library for optional use by guests hosted by applications
that provide a Unix-like system call interface. Host ap-
plications are, of course, free to use their own compilers
and libraries and to design new system call interfaces.

4.2 Microbenchmarks
To understand vx32’s performance costs, we wrote a
small suite of microbenchmarks exercising illustrative
cases. Figure 5 shows vx32’s performance on these tests.

Jump. This benchmark repeats a sequence of 100 no-
op short jumps. Because a short jump is only two bytes,
the targets are only aligned on 2-byte boundaries. In con-
trast, vx32’s generated fragments are aligned on 4-byte
boundaries. The processors we tested vary in how sensi-
tive they are to jump alignment, but almost all run con-
siderably faster on vx32’s 4-byte aligned jumps than the
2-byte jumps in the native code. The Pentium 4 and the
Xeon are unaffected.

Jumpal. This benchmark repeats a sequence of 100
short jumps that are spaced so that each jump target is
aligned on a 16-byte boundary. Most processors execute
vx32’s equivalent 4-byte aligned jumps a little slower.
The Pentium 4 and Xeon are, again, unaffected.

Jumpfar. This benchmark repeats a sequence of 100
jumps spaced so that each jump target is aligned on a
4096-byte (page) boundary. This is a particularly hard
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Label CPU(s) RAM Operating System
Athlon64 x86-32 1.0GHz AMD Athlon64 2800+ 2GB Ubuntu 7.10, Linux 2.6.22 (32-bit)
Core 2 Duo 1x2 2.33GHz Intel Core 2 Duo 1GB Mac OS X 10.4.10
Opteron x86-32 1.4GHz AMD Opteron 240 1GB Ubuntu 7.10, Linux 2.6.22 (32-bit)
Opteron x86-64 1.4GHz AMD Opteron 240 1GB Ubuntu 7.10, Linux 2.6.22 (64-bit)
Pentium 4 3.06GHz Intel Pentium 4 2GB Ubuntu 7.10, Linux 2.6.22
Pentium M 1.0GHz Intel Pentium M 1GB Ubuntu 7.04, Linux 2.6.10
Xeon 2x2 3.06GHz Intel Xeon 2GB Debian 3.1, Linux 2.6.18

Figure 4: Systems used during vx32 evaluation. The two Opteron listings are a single machine running different operating systems.
The notation 1x2 indicates a single-processor machine with two cores. All benchmarks used gcc 4.1.2.
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Figure 5: Normalized run times for microbenchmarks running under vx32. Each bar plots run time using vx32 divided by run
time for the same benchmark running natively (smaller bars mark faster vx32 runs). The benchmarks are described in Section 4.2.
Results for the Intel Xeon matched the Pentium 4 almost exactly and are omitted for space reasons.

case for native execution, especially if the processor’s
instruction cache uses only the low 12 bits of the instruc-
tion address as the cache index. Vx32 runs this case sig-
nificantly faster on all processors, because of better in-
struction cache performance in the translation.

Call. This benchmark repeatedly calls a function con-
taining only a return instruction. The call is a direct
branch, though the return is still an indirect branch.

Callind. This benchmark is the same as call, but the
call is now an indirect branch, via a register.

Comparing the bars for call against the bars for call-
ind may suggest that vx32 takes longer to execute direct
function calls than indirect function calls, but only rela-
tive to the underlying hardware: a vx32 indirect call takes
about twice as long as a vx32 direct call, while a native
indirect call takes about four times as long as a native
direct call. The call bars are taller than the callind bars
not because vx32 executes direct calls more slowly, but
because native hardware executes them so much faster.

Nullrun. This benchmark compares creating and ex-
ecuting a vx32 guest instance that immediately exits
against forking a host process that immediately exits.

Syscall. This benchmark compares a virtual system
call relayed to the host system against the same system
call executed natively. (The system call is close(-1),
which should be trivial for the OS to execute.)

4.3 Large-scale benchmarks
The microbenchmarks help to characterize vx32’s per-
formance executing particular kinds of instructions, but
the execution of real programs depends critically on how
often the expensive instructions occur. To test vx32
on real programs, we wrote a 500-line host application
called vxrun that loads ELF binaries [41] compiled for
a generic Unix-like system call interface. The system
call interface is complete enough to support the SPEC
CPU2006 integer benchmark programs, which we ran
both using vx32 (vxrun) and natively. We ran only the C
integer benchmarks; we excluded 403.gcc and 429.mcf
because they caused our test machines, most of which
have only 1GB of RAM, to swap.

Figure 6 shows the performance of vx32 compared to
the native system on five different 32-bit x86 processors.
On three of the seven benchmarks, vx32 incurs a perfor-
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Figure 6: Normalized run times for SPEC CPU2006 benchmarks running under vx32. Each bar plots run time using vx32 divided
by run time for the same benchmark running natively (smaller bars mark faster vx32 runs). The left three benchmarks use fewer
indirect branches than the right four, resulting in less vx32 overhead. The results are discussed further in Section 4.3.
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Figure 7: Normalized run times for SPEC CPU2006 benchmarks running in four configurations on the same AMD Opteron system:
natively on 32-bit Linux, under vx32 hosted by 32-bit Linux, natively on 64-bit Linux, and under vx32 hosted by 64-bit Linux.
Each bar plots run time divided by run time for the same benchmark running natively on 32-bit Linux (smaller bars mark faster
runs). Vx32 performance is independent of the host operating system’s choice of processor mode, because vx32 always runs guest
code in 32-bit mode. The results are discussed further in Section 4.3.

mance penalty of less than 10%, yet on the other four, the
penalty is 50% or more. The difference between these
two groups is the relative frequency of indirect branches,
which, as discussed in Section 3, are the most expensive
kind of instruction that vx32 must handle.

Figure 8 shows the percentage of indirect branches re-
tired by our Pentium 4 system during each SPEC bench-
mark, obtained via the CPU’s performance counters [21].
The benchmarks that exhibit a high percentage of indi-
rect call, jump, and return instructions are precisely those
that suffer a high performance penalty under vx32.

We also examined vx32’s performance running under
a 32-bit host operating system compared to a 64-bit host
operating system. Figure 7 graphs the results. Even
under a 64-bit operating system, the processor switches
to 32-bit mode when executing vx32’s 32-bit code seg-
ments, so vx32’s execution time is essentially identical
in each case. Native 64-bit performance often differs
from 32-bit performance, however: the x86-64 architec-
ture’s eight additional general-purpose registers can im-
prove performance by requiring less register spilling in

0 % 1 % 2 %

401.bzip2
456.hmmer

462.libquantum
445.gobmk

458.sjeng
400.perlbench

464.h264ref

return instructions retired other indirect branches retired

Figure 8: Indirect branches as a percentage of total instructions
retired during SPEC CPU2006 benchmarks, measured using
performance counters on the Pentium 4. The left portion of
each bar corresponds to return instructions; the right portion
corresponds to indirect jumps and indirect calls. The indirect-
heavy workloads are exactly those that experience noticeable
slowdowns under vx32.

compiled code, but its larger pointer size can hurt per-
formance by decreasing cache locality, and the balance
between these factors depends on the workload.
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5 Applications
In addition to evaluating vx32 in isolation, we evaluated
vx32 in the context of several applications built using
it. This section evaluates the performance of these ap-
plications, but equally important is the ability to create
them in the first place: vx32 makes it possible to create
interesting new applications that execute untrusted x86
code on legacy operating systems without kernel modifi-
cations, at only a modest performance cost.

5.1 Archival storage
VXA [13] is an archival storage system that uses vx32 to
“future proof” compressed data archives against changes
in data compression formats. Data compression algo-
rithms evolve much more rapidly than processor archi-
tectures, so VXA packages executable decoders into the
compressed archives along with the compressed data it-
self. Unpacking the archive in the future then depends
only on being able to run on (or simulate) an x86 pro-
cessor, not on having the original codecs used to com-
press the data and being able to run them natively on the
latest operating systems. Crucially, archival storage sys-
tems need to be efficiently usable now as well as in the
future: if “future proofing” an archive using sandboxed
decoders costs too much performance in the short term,
the archive system is unlikely to be used except by pro-
fessional archivists.

VXA uses vx32 to implement a minimal system call
API (read, write, exit, sbrk). Vx32 provides exactly
what the archiver needs: it protects the host from buggy
or malicious archives, it isolates the decoders from the
host’s system call API so that archives are portable across
operating systems and OS versions, and it executes de-
coders efficiently enough that VXA can be used as a
general-purpose archival storage system without notice-
able slowdown. To ensure that VXA decoders behave
identically on all platforms, VXA instructs vx32 to dis-
able inexact instructions like the 387 intrinsics whose
precise results vary from one processor to another; VXA
decoders simply use SSE and math library equivalents.

Figure 9 shows the performance of vx32-based de-
coders compared to native ones on the four test archi-
tectures. All run within 30% of native performance, of-
ten much closer. The jpeg decoder is consistently faster
under vx32 than natively, due to better cache locality.

5.2 Extensible public key infrastructure
Alpaca [24] is an extensible public-key infrastructure
(PKI) and authorization framework built on the idea of
proof-carrying authorization (PCA) [3], in which one
party authenticates itself to another by using an explicit
logical language to prove that it deserves a particular
kind of access or is authorized to request particular ser-

vices. PCA systems before Alpaca assumed a fixed set
of cryptographic algorithms, such as public-key encryp-
tion, signature, and hash algorithms. Alpaca moves these
algorithms into the logical language itself, so that the ex-
tensibility of PCA extends not just to delegation policy
but also to complete cryptographic suites and certificate
formats. Unfortunately, cryptographic algorithms like
round-based hash functions are inefficient to express and
evaluate explicitly using Alpaca’s proof language.

Alpaca uses Python bindings for the vx32 sandbox to
support native implementations of expensive algorithms
like hashes, which run as untrusted “plug-ins” that are
fully isolated from the host system. The lightweight
sandboxing vx32 provides is again crucial to the appli-
cation, because an extensible public-key infrastructure
is unlikely to be used in practice if it makes all crypto-
graphic operations orders of magnitude slower than na-
tive implementations would be.

Figure 10 shows the performance of vx32-based hash
functions compared to native ones. All run within 25% of
native performance. One surprise is the Core 2 Duo’s ex-
cellent performance, especially on whirlpool. We believe
the Core 2 Duo is especially sensitive to cache locality.

5.3 Plan 9 VX
Plan 9 VX (9vx for short) is a port of the Plan 9 oper-
ating system [35] to run on top of commodity operating
systems, allowing the use of both Plan 9 and the host sys-
tem simultaneously and also avoiding the need to write
hardware drivers. To run user programs, 9vx creates an
appropriate address space in a window within its own ad-
dress space and invokes vx32 to simulate user mode exe-
cution. Where a real kernel would execute iret to enter
user mode and wait for the processor to trap back into
kernel mode, 9vx invokes vx32 to simulate user mode,
waiting for it to return with a virtual trap code. 9vx
uses a temporary file as a simulation of physical memory,
calling the host mmap and mprotect system calls to map
individual memory pages as needed. This architecture
makes it possible to simulate Plan 9’s shared-memory
semantics exactly, so that standard Plan 9 x86 binaries
run unmodified under 9vx. For example, Plan 9 threads
have a shared address space except that each has a pri-
vate stack. This behavior is foreign to other systems and
very hard to simulate directly. Because all user-mode ex-
ecution happens via vx32, 9vx can implement this easily
with appropriate memory mappings.

The most surprising aspect of 9vx’s implementation
was how few changes it required. Besides removing the
hardware drivers, it required writing about 1,000 lines of
code to interface with vx32, and another 500 to interface
with the underlying host operating system. The changes
mainly have to do with page faults. 9vx treats vx32 like
an architecture with a software-managed TLB (the code
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Figure 9: Normalized run times for VXA decoders running under vx32. Each bar plots run time using vx32 divided by run time
for the same benchmark running natively (smaller bars mark faster vx32 runs). Section 5.1 gives more details. The jpeg test runs
faster because the vx32 translation has better cache locality than the original code.
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Figure 10: Normalized run times for cryptographic hash functions running under vx32. Each bar plots run time using vx32 divided
by run time for the same benchmark running natively (smaller bars mark faster runs).
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Figure 11: Normalized run times for simple Plan 9 benchmarks. The four bars correspond to Plan 9 running natively, Plan 9 VX,
Plan 9 under VMware Workstation 6.0.2 on Linux, and Plan 9 under QEMU on Linux using the kqemu kernel extension. Each
bar plots run time divided by the native Plan 9 run time (smaller bars mark faster runs). The tests are: swtch, a system call that
reschedules the current process, causing a context switch (sleep(0)); pipe-byte, two processes sending a single byte back and forth
over a pair of pipes; pipe-bulk, two processes (one sender, one receiver) transferring bulk data over a pipe; rdwr, a single process
copying from /dev/zero to /dev/null; sha1zero, a single process reading /dev/zero and computing its SHA1 hash; du, a single
process traversing the file system; and mk, building a Plan 9 kernel. See Section 5.3 for performance explanations.
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was already present in Plan 9 to support architectures
like the MIPS). 9vx unmaps all mapped pages during a
process context switch (a single munmap call) and then
remaps pages on demand during vx32 execution. A fault
on a missing page causes the host kernel to send 9vx a
signal (most often SIGSEGV), which causes vx32 to stop
and return a virtual trap. 9vx handles the fault exactly
as Plan 9 would and then passes control back to vx32.
9vx preempts user processes by asking the host OS to
deliver SIGALRM signals at regular intervals; vx32 trans-
lates these signals into virtual clock interrupts.

To evaluate the performance of 9vx, we ran bench-
marks on our Pentium M system in four configurations:
native Plan 9, 9vx on Linux, Plan 9 under VMware
Workstation 6.0.2 (build 59824) on Linux, and Plan 9
under QEMU on Linux with the kqemu module. Fig-
ure 11 shows the results. 9vx is slower than Plan 9 at con-
text switching, so switch-heavy workloads suffer (swtch,
pipe-byte, pipe-bulk). System calls that don’t context
switch (rdwr) and ordinary computation (sha1zero) run
at full speed under 9vx. In fact, 9vx’s simulation of sys-
tem calls is faster than VMware’s and QEMU’s, because
it doesn’t require simulating the processor’s entry into
and exit from kernel mode. File system access (du, mk)
is also faster under 9vx than Plan 9, because 9vx uses
Linux’s in-kernel file system while the other setups use
Plan 9’s user-level file server. User-level file servers are
particularly expensive in VMware and QEMU due to the
extra context switches. We have not tested Plan 9 un-
der VMware ESX server, which could be more efficient
than VMware Workstation since it bypasses the host OS
completely.

The new functionality 9vx creates is more important
than its performance. Using vx32 means that 9vx re-
quires no special kernel support to make it possible to
run Plan 9 programs and native Unix programs side-by-
side, sharing the same resources. This makes it easy to
experiment with and use Plan 9’s features while avoid-
ing the need to maintain hardware drivers and port large
pieces of software (such as web browsers) to Plan 9.

5.4 Vxlinux
We implemented a 250-line host application, vxlinux,
that provides delegation-based interposition [17] by run-
ning unmodified, single-threaded Linux binaries under
vx32 and relaying the guest’s system calls to the host OS.
A complete interposition system would include a policy
controlling which system calls to relay, but for now we
merely wish to evaluate the basic interposition mecha-
nism. The benefit of vxlinux over the OS-independent
vxrun (described in Section 4) is that it runs unmodi-
fied Linux binaries without requiring recompilation for
vx32. The downside is that since it implements system
calls by passing arguments through to the Linux kernel,

it can only run on Linux. The performance of the SPEC
benchmarks under vxlinux is essentially the same as the
performance under vxrun; we omit the graph.

6 Conclusion
Vx32 is a multipurpose user-level sandbox that enables
any application to load and safely execute one or more
guest plug-ins, confining each guest to a system call
API controlled by the host application and to a restricted
memory region within the host’s address space. It exe-
cutes sandboxed code efficiently on x86 architecture ma-
chines by using the x86’s segmentation hardware to iso-
late memory accesses along with dynamic code transla-
tion to disallow unsafe instructions.

Vx32’s ability to sandbox untrusted code efficiently
has enabled a variety of interesting applications: self-
extracting archival storage, extensible public-key infras-
tructure, a user-level operating system, and portable or
restricted execution environments. Because vx32 works
on widely-used x86 operating systems without kernel
modifications, these applications are easy to deploy.

In the context of these applications (and also on the
SPEC CPU2006 benchmark suite), vx32 always deliv-
ers sandboxed execution performance within a factor of
two of native execution. Many programs execute within
10% of the performance of native execution, and some
programs execute faster under vx32 than natively.
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