o
® @
THE MAGAZINE OF USENIX & SAGE
, ‘ October 2000 e volume 25 e number 6

SECURITY
Musings

The System Administrators Guild



50

by Rik Farrow

Rik Farrow provides
UNIX and Internet
security consulting
and training. He is
the author of UNIX
System Security and
System Administrator’s
Guide to System V.

<rik@spirit.com>

musings

More Stack-smashing Fun

July brought the usual stuff — crushing heat, humidity (for those not in the
desert, that is), and a new technique for smashing the stack. At first, | was
perplexed about why some were saying that this was not a buffer overflow,
but after pouring enough water over my head to cool off and think about it,
| can see why.

The problem first surfaced in reports of a root exploit of the venerable wu-ftpd server.
You may recall that wu-ftpd was the victim of a buffer-overflow exploit published in
February 1999. In that exploit, if the attacker could write in any directory available on
the FTP server, the server could be coaxed into replacing itself with a shell, running as
root, and still connected to the remote attacker using TCP.

The February exploit was a classic buffer overflow. In that attack, shell code, that is,
machine instructions for the target architecture, gets copied to the stack, along with a
leader of NOPs (null operations), and then many copies of an address that should
point within the regions of NOPs. The idea is to replace the correct return address with
the pointer to the shell code (really, the preceding leader of NOPs), so that when the
function returns, it will instead execute the shell code.

There are several techniques for dealing with this. One popular one is to make the stack
nonexecutable. This helps but still permits buffer overflows to succeed. The exploit
must copy the shell code somewhere else, not on the stack, then overwrite the return
address with the address of the shell code. When the function returns, the shell code
gets executed (as it is not in a nonexecutable portion of memory).

StackGuard, subject of several USENIX papers (also, check out <http://wirex.com> and
<http://immunix.org>) works by modifying the way in which functions are called. The
function preamble and postamble puts a “canary” value below the return address on
the stack and then checks that the canary has not been smashed on the return from the
function. Now, a buffer overflow that overwrites the return address also overwrites the
canary, and the StackGuard mods cause the program to exit rather than execute shell
code.

The programming flaw that makes buffer overflows possible is the use of functions and
loops that copy user input into a locally defined array without counting how many
bytes are being copied. The C language was designed by guys who were writing an
operating system (UNIX), and didn’t need to worry about running off the end of an
array. They wanted performance, and also knew what they were doing.

The problem occurs when a program accepts user input, whether from the command
line, a network connection, or the environment, and copies it without counting to a
buffer allocated on the stack (any variables declared locally, that is local to a function,
get allocated on the stack). Some of these functions are: strcat(), strcpy(), sprintf(),
vsprintf(), bcopy(), gets() and scanf(). You can check out the links found at
<http://www.securityportal.com/Iskb/articles/kben10000082.html> for replacements for
these functions, such as strncat(), as well as some other resources for secure program-
ming practices.

Stack Manipulation
Rather than blindly smashing the stack, the new technique enables an attacker to probe
the stack, then surgically install a new return address (while not touching the canary).

Vol. 25, No. 6 ;login:


http://wirex.com
http://immunix.org
http://www.securityportal.com/lskb/articles/kben10000082.html

Programs, like wu-ftpd, that pass user input to formatting functions, like sprintf(), are
the culprits here.

The printf() family of C functions has a rather interesting capability, especially if you
have learned to program using Java or SmallTalk only. That is, these functions accept a
variable list of arguments. Internally, a set of routines collectively known as varargs
handles the processing of function calls when the number calling arguments is not
known at compile time, as with sprintf(). Let’s look at a little code example posted by
Pascal Bouchareine on July 18 to bugtraq (<http://www.securityfocus.com/>):

void main() {
char tmp[512];
char buf[512];
while(1) {
memset(buf, "\0*, 512);
read(0, buf, 512);
sprintf(tmp, buf);
printf("%s", tmp);
}

}

This simple program will echo back anything that you type as input (once you compile
and run it). sprintf(tmp, buf) copies the input buffer, buf, into a second buffer, tmp. The
array tmp is local to main(), so it appears on the stack. So far so good.

What makes this interesting is when you include format characters in your input, such
as 9%s, %f, or %x. To sprintf(), these appear to be commands to pop values off the stack
and format them. For example, providing “%x %x %x %x” as input will result in
“25207825 78252078 a782520 0” (on Intel processors and their little-endian byte order-
ing). “25” is the ‘%’ “20” a space, and “78” the ‘x’ as hexadecimal. But just displaying
what we have put on the stack is not very interesting. What if you use enough format-
ting commands to move up the stack until you display the return address? Now,
through the user control of format commands, the state of the stack can be displayed,
and the return address located.

Finding the return address is only part of the fun. There is another format command
that I do not remember ever using, %n. The %n command counts the number of argu-
ments popped off the stack by sprintf() and related functions and stores that value in
the location pointed to. By arranging for %n to place values in the four bytes of the
return address, you can overwrite the return address without disturbing the canary
which lies below it on the stack.

With these two techniques, exploits can be written that can search for the return
address, overwrite it, then execute shell code. wu-ftpd and its SITE-EXEC command
logging became the target of a number of exploits all published to bugtraq within a
couple of days. There was another formatting problem discovered involving setprocti-
tle(), but no exploit for this was published. You can learn about vendor responses to this
by checking out: <http://www.cert.org/advisories/CA-2000-13.htmlI>.

Full Disclosure

Once upon a time, only “hackers” and a few people in universities and government
research sites had access to information about security exploits. The “good guys”
defended keeping this information secret by saying that the number of attacks would
increase if they made what they knew public.

October 2000 ;login: MUSINGS -

SECURITY | PROGRAMMING

51


http://www.securityfocus.com/>):
http://www.cert.org/advisories/CA-2000-13.html

52

| am glad to have left the
bad old days of keeping
vulnerabilities secret behind

us.

Of course, keeping secrets this way kept most sysadmins unaware of the dangers
involved in not upgrading to the latest patch for service Y. (Can’t use X here for obvious
reasons.) The middle road involves sharing enough information to permit sysadmins to
test their servers and see if they are vulnerable or not. After all, you don’t want to patch
something that is not broken. (You will likely break it.)

Even the middle road is dangerous, as knowing how to test for the vulnerability is two-
thirds of the way to creating an exploit. But I far prefer the current state of affairs, as [
prefer to know what is wrong, why it is wrong, and that it must be fixed. Also, the pub-
lishing of vulnerability information has lead to better vendor response in fixing prob-
lems.

I am glad to have left the bad old days of keeping vulnerabilities secret behind us. Now
we have to deal with security problems rather than sweep them under the carpet. That
is much better than living in denial.

For a free, unpaid, political diatribe visit: <http://www.spirit.com/pol. html>

Vol. 25, No. 6 ;login:


http://www.spirit.com/pol.html>

