
{

THE USENIX MAGAZINE

December 2003 • volume 28 • number 6

#
The Advanced Computing Systems Association

inside:
SECURITY

Perrine: The End of crypt() Passwords

. . . Please?

Wysopal: Learning Security QA from

the Vulnerability Researchers

Damron: Identifiable Fingerprints in

Network Applications

Balas: Sebek: Covert Glass-Box Host Analysis

Jacobsson & Menczer: Untraceable Email Cluster Bombs

Mudge: Insider Threat

Singer: Life Without Firewalls

Deraison & Gula: Nessus

Forte: Coordinated Incident Response Procedures

Russell: How Are We Going to Patch All These Boxes?

Kenneally: Evidence Enhancing Technology

BOOK REVIEWS AND HISTORY

USENIX NEWS

CONFERENCE REPORTS

12th USENIX Security Symposium

Focus Issue: Security
Guest Editor: Rik Farrow

13December 2003 ;login:

Every day, vulnerability researchers find and publicly disclose new vulnera-
bilities for software products. Many of these products are made by vendors
who assure us that they know how to create secure software. What makes
it possible for a vulnerability researcher, who usually doesn’t have access to
design documentation or source code, to find these problems? He would
seem to be at a major disadvantage compared to the vendor’s testing team.
Is the vendor not looking? Or is there something about the process of dis-
covering vulnerabilities that keeps software vendors from doing it well? This
article will take a look at the differences between researcher and vendor
and how these differences lead to different results.

First, let’s examine a bit of history. The setting is the 1997 USENIX security confer-
ence. Mudge from the L0pht is hanging out with Hobbit, who, while not officially part
of the group, often collaborated with it. The two are approached by Paul Leach, a
Microsoft security architect, and other senior technical people from Microsoft. The
gentlemen from Microsoft wanted to sit down and learn how Hobbit had discovered
vulnerabilities in the Windows CIFS protocol1 and how Mudge managed to find flaws
in Windows NT’s network authentication. Over a fine dinner and a few bottles of
wine, the two researchers took the Microsoft security folks through the process of
black box reverse engineering, with a vulnerability twist. This is what they described.

The first task for attacking the CIFS protocol was to install a host with a sniffer on the
network between two hosts running Windows. The sniffer was running on a non-
Microsoft OS. The reason for this wasn’t just because Hobbit’s coding skills happened
to be better on UNIX. It was also to make sure that the analysis host’s OS wasn’t con-
taminated with any Windows internals knowledge. If a Windows host was used for
analyzing the network traffic, the network stack or other internal OS components
might perform hidden data manipulation. This is a theme that will pervade the reverse
engineering process. All analysis tools, whether off-the-shelf or custom coded, need to
be free of unwanted interaction with the program under test. For network analysis, a
different OS often provides enough isolation. For analysis programs that must run on
the same host, it is best to avoid using higher-level OS APIs that might perform
unwanted data manipulation.

With the sniffer in place, CIFS transactions were performed between the two Windows
hosts, and the network packets were recorded. Transactions were repeated with slight
changes, and the differences in the packets were noted. This was a laborious process,
but over time it was clear what different packet types there were and what data fields
were in these packets. The gentlemen from Microsoft were surprised by the approach.
It had never occurred to them to analyze the protocol this way. After all, they had Win-
dows API functions they could call to look at the data in the CIFS transactions. They
had design documentation to tell them what was in a particular field within a packet.
Their analysis approach differed in that they were seeing how the CIFS protocol was
supposed to work, not how it actually did work. With his independent-analysis
approach, Hobbit was able to discover workings of the CIFS protocol that were
unknown to its designers and implementers.

learning security QA
from the vulnerability
researchers

LEARNING SECURITY QA ●

●
SE

C
U

R
IT

Y

by Chris Wysopal
Chris Wysopal is the
vice president of
research and devel-
opment at @stake,
where he leads
research on how to
build and test soft-
ware for security vul-
nerabilities.

cwysopal@stake.com

1. Hobbit, “CIFS: Common Insecurities Fail
Scrutiny,” 1997, http://downloads.securityfocus.
com/library/cifs.txt.

http://downloads.securityfocus

Vol. 28, No. 6 ;login:

What may seem like liabilities on the vulnerability researchers’ side – using a different
OS, having no design documentation or code to look at, and having no access to inter-
nal testing tools (which may share code with the system under test) – are turned into
benefits. The researcher is not tempted to take a time-saving shortcut while analyzing
the system. He must build up from scratch what the bits on the wire mean and how
they can be changed. He gets an unbiased view of how the program actually works.

It is understandable that the security folks from Microsoft didn’t know how vulnera-
bility researchers worked in 1997. Vulnerability researchers were a small, closed group
of people dealing with something fairly arcane. Today, software security affects every
computer user, from those in the military and government to the teenager at home. It
is hard to believe in this age of heightened security awareness that most people who
develop software still don’t know how vulnerability researchers work. The software-
testing community needs to learn why these researchers are successful and start to
work like them, though perhaps a bit more formally. Otherwise, vulnerabilities that
could have been found before a product is delivered to the customer will be found by
researchers and end up needing to be patched, or worse, be exploited.

The first thing the researcher does is zero in on the weakest links in the software, the
areas of highest risk. Ad hoc threat modeling is performed on the data as it flows in
and out of the program. Where can the attacker inject data into the program? Where
are the places that data can be injected without first performing authentication? This is
the primary attack surface.

Many software testers, when they actually take time to do security testing, get bogged
down looking at the security throughout the entire application. This is understand-
able, since they are used to testing the functionality of the whole application. But secu-
rity testing is very different from feature testing. When there is limited time, and there
always is, there is a need to start at the areas of highest risk and continue toward areas
of lower risk.

The other major shift that testers need to make is to stop thinking of security as a fea-
ture that can be tested with positive functionality testing. Positive testing is making
sure a feature works. If the program has authentication and access control lists, those
are typically tested. Vulnerability researchers almost never look at the security features.
Positive testing will not find out that a program contains a stack buffer overflow in
code that reads data from the network. Testers need to learn the art of negative testing,
the art of causing faults.

In the perfect development world, a finished program would exactly match the func-
tionality of its design specification, with no more functionality and no less. In the
graphic on the facing page there are two circles, one representing the program’s design
and the other representing the actual implementation. Since we have not perfected
software coding, there is a need for testers to find the mistakes that coders make. These
are the mistakes that lead to the design not matching the implementation. But most
testers only cover the deviation, where the implementation is lacking functionality
defined in the design. What about the deviation where the program has functionality
that was unintended? This is where the vulnerability researcher’s skills come into play.
This is where knowing what a program actually does and not just what it was designed
to do is critical.

Negative testing is identifying the inputs of the program and putting in data that is
obviously invalid. Typically, the data is nowhere close to what a normal user would do.

It is hard to believe in this
age of heightened security
awareness that most people
who develop software still
don’t know how vulnerability
researchers work.

14

Many testers can’t imaging anyone inputting a username of 50,000 characters, so they
don’t make it part of their test plan. But attackers do try such seemingly ridiculous
inputs, so the negative testing plan should too.

Luckily the tester does not need to input this manually. State-of-the-art vulnerability
research involves automated fuzzers that can perform the fault-injection process.
Fuzzers have a list of rules for creating input that is known to cause errors in process-
ing: long strings, Unicode strings, script interpreter commands and delimiters, printf-
style format strings, file names, etc. @stake’s WebProxy tool does this for HTTP.
Immunity Security’s SPIKE is a fuzzer-creation toolkit that can be used to fuzz arbi-
trary network protocols. Once you have a fuzzer for the protocol you want to test, you
just run it against a debug version of the software running in the debugger. Chances
are the program will eventually crash and you will be sitting at the vulnerable line of
code in the debugger.

There is much more for the software tester to learn, but a great start is to learn how to
threat model for the highest-risk attack surfaces, understand negative testing, and get
up to speed on fuzzing. Follow the online security community to learn the tools and
techniques that vulnerability researchers use and make them part of your quality
assurance process. Every vulnerability found during QA is one less for the vulnerability
researchers to find and one less vulnerability for software users to patch.

15December 2003 ;login:

2. H. Thompson and J.A. Whittaker, “Testing for
Software Security,” Dr. Dobb’s Journal (Novem-
ber 2002).

●
SE

C
U

R
IT

Y

Design vs. Reality2

LEARNING SECURITY QA ●

