
47June 2004 ;login:

C# overloaded operators

l

P

R
O

G
R

A
M

M
IN

G

In our examination of the C# programming language thus far,
we’ve seen that classes are a basic design and structuring tool.
For example, you might have an application that uses a lot of
X,Y points, and you could implement a Point class using C#
language features. Instances (objects) of this class would repre-
sent specific points like 123,456.

Classes bring together both data (such as a pair of integers to
represent points) and operations on that data (e.g., comparing
one point to another). The operations are called methods, and
in this column we’ll look at how methods can be specified using
operator names.

The idea is that a method’s name can be something like ==
instead of Equals, or + instead of add, and using such names
leads to a natural way of expressing operations on objects.

An Example
Let’s look at an example, using a Point class to illustrate the idea
of overloading:

using System;

public class Point {
public readonly int x;
public readonly int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}

public static bool operator==(Point p1, Point p2) {
return p1.x == p2.x && p1.y == p2.y;

}

public static bool operator!=(Point p1, Point p2) {
return !(p1 == p2);

}
}

public class Driver {
public static void Main(string[] args) {

Point point1 = new Point(10, 20);
Point point2 = new Point(20, 30);
Point point3 = new Point(10, 20);

if (point1 == point2)
Console.WriteLine("point1 == point2");

if (point1 == point3)
Console.WriteLine("point1 == point3");

if (point1 != point2)
Console.WriteLine("point1 != point2");

}
}

This class defines a couple of public readonly fields, used to rep-
resent particular X,Y values. Readonly means that the fields are
initialized in the constructor, and can then be read but not writ-
ten by users of the class’s objects. C# properties can also be used
to achieve a similar end; they are a hybrid of data fields and
methods.

The class also defines two operator methods, operator== and
operator!=. These methods take two objects of Point type, and
thus it is possible to say things like:

if (point1 == point2)
...

if (point3 != point4)
...

and provide a customized definition of what == and != mean
for a given class. In the Point example, two points are equal if
their X,Y values are the same, and inequality is defined simply
as not being equal.

Defining == in this way might seem pretty obvious. But in real-
world situations, equality can be defined in many ways. For
example, if the X,Y points are represented as double values
instead of integers, it might make sense to consider two points
equal if the values are close to each other, say within 0.001%,
rather than exactly the same.

We can define operator== with any semantics we like. For
example, we can swap the bodies of the operator== and opera-
tor!= methods, and thereby invert the semantics. But doing so
violates a fundamental rule of operator overloading – using
such operators in a confusing way can make programs impossi-
ble to read and comprehend. It’s possible to create your own
reality using overloaded operators, a reality incomprehensible
to others.

C# requires that the == and != operators be overloaded as a
unit. If one is overloaded, the other must be as well.

by Glen
McCluskey
Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
tation areas.
glenm@glenmccl.com

C# OVERLOADED OPERATORS l

Vol. 29, No.3 ;login:48

A C# compiler may give a warning for the code above, saying
that operator== is overloaded, but there is no Equals method
specified. What does this mean? Equals is a method in the root
class (System.Object), and typically you want to override it to
provide class-specific behavior. Since C# is designed to interop-
erate with other languages, and those languages may not have
operator overloading but may wish to call a C# Equals method,
it’s a good idea also to define Equals if operator== is defined.

This can be done by adding some additional lines of code:

public override bool Equals(object obj) {
if (!(obj is Point))

return false;
return this == (Point)obj;

}

public override int GetHashCode() {
return x ^ y;

}

public override string ToString() {
return String.Format("({0},{1})", x, y);

}

We have defined Equals in terms of the == operator already
specified above. GetHashCode and ToString are two other Sys-
tem.Object methods that are typically overridden as well, and
we have also provided implementations of them.

Conversion Operators
You can also specify conversion operators in the C# classes you
design. Such operators are used when converting from one data
type to another.

For example, suppose that we define another Point class, one
that represents X,Y values using unsigned 32-bit integers. An
alternate representation of such points might be a single
unsigned 64-bit integer, with the two 32-bit values stored in the
two halves of the larger integer. Here’s some code that shows
how this idea can be implemented:

using System;

public class Point {
public readonly uint x;
public readonly uint y;

public Point(uint x, uint y) {
this.x = x;
this.y = y;

}

public Point(ulong val) {
x = (uint)(val >> 32);
y = (uint)(val & 0xffffffffUL);

}

public static implicit operator ulong(Point p) {
return ((ulong)p.x << 32) | p.y;

}
}

public class Driver {
public static void Main(string[] args) {

Point p1 = new Point(123456, 234567);

ulong pt = p1;

Point p2 = new Point(pt);

Console.WriteLine(p2.x + " " + p2.y);
}

}

This class defines the usual constructor that takes an X,Y pair of
values, along with a constructor that takes a single 64-bit value.
The class also defines a method:

implicit operator ulong(Point p)

Such a method supports operations such as:

Point point1 = new Point(123, 456);

ulong p = point1;

that is, automatic conversion from a Point object to an unsigned
long value.

The implicit specifier is used in declaring the method. If we’d
used the explicit specifier instead, we would then need to say:

ulong p = (ulong)point1;

This situation is analogous to converting a long primitive value
to a short value; some languages require an explicit cast,
because the conversion may not be possible without data loss.

Indexers
A final example of C# operator overloading illustrates what is
called an indexer. The idea is that you might have a class whose
objects represent databases or tables or something, and it would
be natural to overload the [] operator to represent lookup in the
database or table.

Here’s an example of how indexers are used:

using System;
using System.Collections;

public class Index {
private string[,] list = new string[,] {

{"jane jones", "123-4567"},
{"tom garcia", "234-5678"},
{"mildred smither", "345-6789"}

};

49June 2004 ;login:

l

P

R
O

G
R

A
M

M
IN

Gpublic string this[string index] {
get {

int listlen = list.GetUpperBound(0);

for (int i = 0; i <= listlen; i++) {
if (list[i,0] == index)

return list[i,1];
}

return null;
}

}
}

public class Driver {
public static void Main(string[] args) {

Index phonelist = new Index();

string num = phonelist["tom garcia"];

Console.WriteLine(num);
}

}

This demo implements a simple phone list lookup scheme.

The key line of code in this example is:

public string this[string index] { ... }

This says that when [] is applied to objects of the Index class, the
get and set code should be executed to actually do the indexing.
In this example, we specify a string argument to [] that is used as
the key for lookup, but any type of argument is allowed, and
you can even use multiple arguments – for example, to imple-
ment virtual two-dimensional arrays.

The syntax is very similar to what is used for C# properties. The
get code is invoked when obj[index] is used in an rvalue context,
and the set logic (which we do not define) is executed when
obj[index] is used as an lvalue.

Operator overloading is a powerful technique that you might
want to use in your C# programs.

C# OVERLOADED OPERATORS l

Save the Date!
WORLDS ’04

First Workshop on
Real, Large Distributed Systems
December 5, 2004 u San Francisco, CA
Paper submissions due: August 1, 2004

Co-located with OSDI ’04

http://www.usenix.org/worlds04/

NEW!

